THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама


Владельцы патента RU 2410555:

Изобретение относится к двигателестроению, к аксиально-поршневым двигателям внутреннего сгорания с осями цилиндров, расположенными в одной плоскости с осью ведущего вала и с пространственно-качающейся наклонной шайбой. Аксиально-поршневой двигатель содержит блоки цилиндров рабочей (1) и компрессорной (7) секций, коренной вал (13) с наклонными дисками (14, 15), распределительный вал (16), пространственно-качающиеся шайбы (18, 19), опоры (24) с рычагами (25), головку цилиндров рабочей секции (26) с камерами сгорания изменяющегося объема (27), головку цилиндров компрессорной секции (39), впускные коллектора (43), компрессор (44), топливный насос (45) и камеры противодавления (47). Блоки цилиндров (1 и 7) содержат попарно диаметрально противоположно расположенные цилиндры (2, 8). Пространственно-качающиеся шайбы (18, 19) установлены по одной на каждую пару цилиндров (2, 8) и выполнены с цапфами (20, 21). Камеры сгорания изменяющегося объема (27) содержат обратные (28), выпускные (30) и впускные (31) клапаны. Впускные клапаны (31) выполнены с разгрузочными полостями (32). Разгрузочные полости (32) соединены с выпускными коллекторами (33) каналами (34). Головка цилиндров компрессорной секции (39) содержит обратные клапаны на входе (41) и на нагнетании воздуха (41). Клапаны на нагнетании (41) соединены трубопроводами (42) с обратными клапанами (28) на входе воздуха в камеры сгорания (27). Рычаги (25), качающиеся в опорах (24), жестко соединены с шарнирами (5, 11). Камеры противодавления (47) расположены в головке цилиндров (26) рабочей секции и соединены между собой каналами (48). Поршни (46), перемещаясь внутрь камер противодавления (47), увеличивают объем камер сгорания (27) и возвращаются в исходное положение при снижении давления в камерах сгорания (27). Технический результат заключается в снижении нагрузок на детали двигателя при сохранении мощности. 4 ил.

Изобретение относится к двигателестроению, конкретнее к аксиально-поршневым двигателям внутреннего сгорания с осями цилиндров, расположенных в одной плоскости с осью ведущего вала, и с пространственно-качающейся наклонной шайбой.

Известен аксиально-поршневой двигатель, содержащий неподвижный корпус, цилиндры с двумя встречными поршнями в каждом, коренной вал с жестко закрепленными на нем дисками, на наружной поверхности которых через подшипники установлены пространственно-качающиеся шайбы, при этом поршни шарнирно соединены с шатунами, противоположные концы которых шарнирно соединены с качающимися шайбами, а оси цилиндров выполнены параллельными оси коренного вала, двигатель снабжен кольцами, каждая шайба соединена с одним из них посредством двух цапф, расположенных друг против друга на внутренней стороне кольца, кольца соединены с корпусом двумя другими цапфами, расположенными друг против друга с внешней стороны колец, и установлены с возможностью покачивания вокруг осей наружных цапф, расположенные на внутренней и внешней сторонах, перпендикулярны между собой и лежат в одной плоскости с центром вращения дисков и центром пространственного покачивания шайб (см. описание изобретения к патенту РФ №2125162, МПК 6 F01В 3/02, F02В 75/26, публикация 20.01.99).

Недостатками этого двигателя являются недостаточно эффективный способ продувки выхлопных газов и наполнения цилиндров воздухом, а также недостаточная надежность узлов крепления шатунов.

Известен аксиально-поршневой двигатель, содержащий головку цилиндров компрессорной секции с впускными клапанами и с обратными клапанами на нагнетании воздуха, блок цилиндров компрессорной секции с поршнями и жестко закрепленными на них штоками с шарнирами, блок цилиндров рабочей секции с попарно диаметрально противоположно расположенными цилиндрами с двумя встречными поршнями в каждом, с тремя группами камер сгорания, впускных, обратных и выпускных клапанов, форсунок, расположенных в середине и по краям цилиндров, впускными и выпускными каналами, ведущий вал с шестерней привода распределительных валов, с жестко закрепленными на нем двумя встречно-наклонными дисками, на наружной поверхности которых через подшипники скольжения установлены пространственно-качающиеся шайбы (по одной на каждую пару цилиндров) с цапфами и удерживающиеся от вращения рычагами, качающимися в опорах, опорные поршни с шарнирами, жестко закрепленные через штоки с поршнями и движущиеся в направляющих цилиндрах, распределительные валы, воздушные ресиверы (см. описание изобретения к патенту РФ №2335647, МПК F01В 3/2, публикация 10.10.2008).

Недостатками этого двигателя, принятого за прототип, являются высокие нагрузки на детали, надежность и прочность которых обеспечивается увеличением их габаритов.

Задачей заявляемого изобретения является снижение нагрузок на детали двигателя при сохранении мощности.

Сущность изобретения заключается в том, что аксиально-поршневой двигатель внутреннего сгорания содержит:

Блок цилиндров рабочей секции с попарно диаметрально противоположно расположенными цилиндрами с поршнями, шатунами и шарнирами с шатунными шейками в каждом;

Блок цилиндров компрессорной секции с попарно диаметрально противоположно расположенными цилиндрами с поршнями, шатунами и шарнирами с шатунными шейками в каждом;

Коренной вал с жестко закрепленными на нем наклонными дисками;

Распределительный вал, продолжающий коренной вал, с кулачками;

Пространственно-качающиеся шайбы по одной на каждую пару цилиндров с цапфами, установленные через подшипники на наружной поверхности наклонных дисков;

Опоры с рычагами;

Головку цилиндров рабочей секции с камерами сгорания изменяющегося объема, с обратными клапанами, удерживаемыми в закрытом положении давлением воздуха из канала, с выпускными и впускными клапанами с разгрузочными полостями, соединенными с выпускными коллекторами каналами, с форсунками, толкателями, штангами, коромыслами;

Головку цилиндров компрессорной секции с обратными клапанами на входе и обратными клапанами на нагнетании воздуха, соединенными трубопроводами с обратными клапанами на входе воздуха в камеры сгорания;

Впускные коллектора;

Компрессор;

Топливный насос.

Двигатель дополнительно содержит расположенные в головке блока рабочей секции поршни и камеры противодавления, соединенные между собой каналами.

Рычаги жестко соединены с шарнирами, ограничивая их вращение относительно осей цапф и перемещения вдоль осей цапф.

Описание поясняется чертежами, где:

на фиг.1 показан аксиально-поршневой двигатель, общий вид в продольном разрезе;

на фиг.2 - то же, поперечный разрез А-А;

на фиг.3 - то же, поперечный разрез В-В;

на фиг.4 - то же, поперечный разрез С-С.

Аксиально-поршневой двигатель внутреннего сгорания содержит:

Блок цилиндров 1 рабочей секции с попарно диаметрально противоположно расположенными цилиндрами 2 с поршнями 3, шатунами 4 и шарнирами 5 с шатунными шейками 6 в каждом;

Блок цилиндров 7 компрессорной секции с попарно диаметрально противоположно расположенными цилиндрами 8 с поршнями 9, шатунами 10 и шарнирами 11 с шатунными шейками 12 в каждом;

Коренной вал 13 с жестко закрепленными на нем наклонными дисками 14, 15;

Распределительный вал 16, продолжающий коренной вал 13, с кулачками 17;

Пространственно-качающиеся шайбы 18, 19 по одной на каждую пару цилиндров 2, 8 с цапфами 20, 21, установленные через подшипники 22, 23 на наружной поверхности наклонных дисков 14, 15;

Опоры 24 с рычагами 25;

Головку цилиндров 26 рабочей секции с камерами сгорания изменяющегося объема 27, с обратными клапанами 28, удерживаемыми в закрытом положении давлением воздуха из канала 29, с выпускными 30 и впускными 31 клапанами с разгрузочными полостями 32, соединенными с выпускными коллекторами 33 каналами 34, с форсунками 35, толкателями 36, штангами 37, коромыслами 38;

Головку цилиндров 39 компрессорной секции с обратными клапанами 40 на входе и обратными клапанами 41 на нагнетании воздуха, соединенными трубопроводами 42 с обратными клапанами 28 на входе воздуха в камеры сгорания 27;

Впускные коллектора 43;

Компрессор 44;

Топливный насос 45.

Двигатель дополнительно содержит расположенные в головке цилиндров 26 рабочей секции поршни 46 и камеры противодавления 47, соединенные между собой каналами 48.

Рычаги 25 жестко соединены с шарнирами 5, 11, ограничивая их вращение и перемещение относительно осей цапф 20, 21.

Аксиально-поршневой двигатель работает следующим образом. При движении поршней 9 в цилиндрах 8 блока цилиндров 7 от В.М.Т. к Н.М.Т. через расположенные в головке цилиндров 39 компрессорной секции впускные коллектора 43, обратные клапаны 40 происходит наполнение цилиндров 8 воздухом. Цикл впуска. При движении поршней 9 от Н.М.Т. к В.М.Т. происходит сжатие воздуха в цилиндрах 8. При достижении давления, равного давлению в трубопроводах 42, воздух вытесняется через обратные клапаны 41, трубопроводы 42, обратные клапаны 28 в расположенные в головке цилиндров 26 рабочей секции камеры сгорания 27, и при достижении поршнями 9 В.М.Т. обратные клапаны 41, обратные клапаны 28 закрываются. Обратные клапаны 28 удерживаются в закрытом положении давлением воздуха в каналах 29. На период запуска двигателя для предотвращения выпуска воздуха из трубопроводов 42 через открытые впускные клапаны 31 в цилиндры 2 давление воздуха в каналах 29 повышается. При этом открытие обратных клапанов 28 происходит после закрытия впускных клапанов 31. Через форсунки 35 топливным насосом 45 впрыскивается топливо и воспламеняется. При повышении давления в камерах сгорания 27 выше заданного поршни 46 перемещаются из исходного положения в сторону камер противодавления 47, соединенных между собой каналами 48, предотвращая повышение давления в камере сгорания 27 выше заданного. Давление в камерах противодавления 47 и каналах 29 поддерживается компрессором 44 (на чертеже не показан). Цикл сжатия. В то же время при приближении поршней 3 к В.М.Т. открываются впускные клапаны 31, начинается подача рабочего газа из камер сгорания 27 в цилиндры 2 блока цилиндров 1. Разгрузочные полости 32 с каналами 34 служат для предотвращения повышения давления с внутренней стороны впускных клапанов 31, создающего усилия, направленные на открытие впускных клапанов 31. Начало цикла рабочего хода. По мере движения поршней 3 от В.М.Т. к Н.М.Т. поршни 46 перемещаются в исходное положение, поддерживая давление в камерах сгорания 27 и рабочих цилиндрах 2 неизменным. При достижении поршнями 46 исходного положения начинается снижение давления в камерах сгорания 27 и рабочих цилиндрах 2. При выравнивании давления в камерах сгорания 27 и трубопроводах 42 начинается продувка камер сгорания 27 от выхлопных газов воздухом из трубопроводов 42 в рабочие цилиндры 2. По окончании продувки впускные клапаны 31 закрываются. При приближении поршней 3 к Н.М.Т. открываются выпускные клапаны 30. Окончание цикла рабочего хода и начало цикла выпуска. При движении поршней 3 от Н.М.Т. к В.М.Т. через выпускные клапаны 30, выпускные коллектора 33 происходит удаление выхлопных газов. При приближении поршней 3 к В.М.Т. закрываются выпускные клапаны 30. Окончание цикла выпуска. Усилие поршней 3 через шатуны 4, шатунные шейки 6, шарниры 5 передается на цапфы 20 качающихся шайб 18, которые через подшипники 22 воздействуют на сбегающую сторону наклонного диска 14, вращая его с коренным валом 13 и распределительным валом 16. Вращающийся с коренным валом 13 наклонный диск 15 через подшипники 23, качающиеся шайбы 19, цапфы 21, передает усилие на шарниры 11, шатунные шейки 12, шатуны 10, поршни 9, обеспечивая их возвратно-поступательное движение в цилиндрах 8 блока цилиндров 7. Рычаги 25, жестко соединенные с шарнирами 5, 11, качающиеся в опорах 24 препятствуют вращению качающихся шайб 18, 19. Управление впускными 31 и выпускными 30 клапанами осуществляется расположенными на распределительном валу 16 кулачками 17 через толкатели 36, штанги 37, коромысла 38.

Заявленное изобретение позволит уменьшить нагрузки на детали двигателя при сохранении мощности.

Аксиально-поршневой двигатель, содержащий: блок цилиндров рабочей секции с попарно диаметрально противоположно расположенными цилиндрами с поршнями, шатунами и шарнирами с шатунными шейками в каждом; блок цилиндров компрессорной секции с попарно диаметрально противоположно расположенными цилиндрами с поршнями, шатунами и шарнирами с шатунными шейками в каждом; коренной вал с наклонными дисками; распределительный вал с кулачками; пространственно-качающиеся шайбы по одной на каждую пару цилиндров с цапфами; опоры с рычагами; головку цилиндров рабочей секции с камерами сгорания изменяющегося объема, с обратными клапанами, удерживаемыми в закрытом состоянии давлением воздуха из канала, с выпускными и впускными клапанами с разгрузочными полостями, соединенными с выпускными коллекторами, с форсунками, толкателями, штангами, коромыслами; головку цилиндров компрессорной секции с обратными клапанами на входе и обратными клапанами на нагнетании воздуха, соединенными трубопроводами с обратными клапанами на входе воздуха в камеры сгорания; впускные коллектора; компрессор; топливный насос, отличающийся тем, что рычаги жестко соединены с шарнирами, ограничивая их вращение и перемещение относительно осей цапф, двигатель дополнительно содержит расположенные в головке цилиндров рабочей секции камеры противодавления, соединенные каналами, и поршни, перемещающиеся внутрь камер противодавления, увеличивая объем камер сгорания и предотвращая рост давления в них, и возвращающиеся в исходное положение при снижении давления в камерах сгорания.


Владельцы патента RU 2477559:

Изобретение относится к области электротехники и энергетического машиностроения, а именно - к асинхронным электрическим двигателям с короткозамкнутым ротором, и может быть использован, например, для привода мощных насосов. Предлагаемый аксиальный электрический двигатель выполнен стационарным, открытым на участке земли, корпус его составлен из нижнего пояса, включающего фундаментную плиту с нижним опорным узлом, и верхнего пояса, включающего скрепленную с фундаментом звездообразную сферическую ферму, составленную симметрично из упорных балок, стянутых в центре осевым опорно-центровочным узлом. Между нижним опорным узлом и осевым опорно-центровочным узлом установлено рабочее колесо большого диаметра, на торце которого закреплен собственно короткозамкнутый ротор, отделяемый воздушным зазором от магнитопровода статора, сооруженного на фундаментной плите на подиуме. Вал рабочего колеса вверху соединяют с нагрузкой посредством муфты. Технический результат, достигаемый при использовании настоящего изобретения, состоит в обеспечении вращающих моментов большой величины в диапазоне угловых скоростей вращения 50-500 об/мин аксиального электрического двигателя при одновременном упрощении его конструкции. 3 ил.

Изобретение относится к нетрадиционной электроэнергетике, а более конкретно к электрическим асинхронным двигателям переменного тока с короткозамкнутым ротором.

Известен аксиальный электрический двигатель переменного тока, содержащий закрытый корпус с узлами крепления к опоре, размещенный в нем неподвижный статор, состоящий из сердечника с обмоткой и подвижный (вращающийся) короткозамкнутый ротор с горизонтальной осью вращения, установленный в подшипниках фланцев с обеих сторон статора, скрепленных с корпусом. Такой двигатель может быть установлен в любом положении в пространстве и не привязан к одному месту. Такие электрические двигатели хорошо освоены промышленностью, выпускаются различной номенклатуры и широко применяются. См., например, книгу Проектирование электрических машин, авторы И.П.Копылов, Б.К.Клоков и др. изд. «Высшая школа», 2002 г., Москва, стр.29-32.

Недостаток таких двигателей - малые высоты оси вращения роторов, ограничивающие наружный диаметр сердечника статора и не позволяющего достигать большей мощности.

Близкого прототипа к заявляемой конструкции в специальной технической литературе и патентном фонде не найдено.

Цель изобретения - создание специального электрического аксиального двигателя переменного тока простой конструкции с ротором большого диаметра (порядка нескольких метров и более) с частотой вращения 50-300 об/мин, развивающего момент вращения большой величины.

Поставленная цель достигается тем, что двигатель выполнен на участке земли недвижимым стационарным открытым с неподвижным статором и подвижным (вращающимся) рабочим колесом с вертикальной осью вращения, корпус его с нижним и верхним опорными узлами выполнен горизонтальным фундаментом в виде круга, по окружности которого сооружен кольцевой подиум с укрепленной на нем сверху выверенной горизонтальной установочной плитой, на которой собран кольцевой сердечник магнитопровода статора высотой h из шихтованной электротехнической стали, спрессованный прижимной плитой и стянутый рядами шпилек с установочной плитой, в пазы сердечника уложена обмотка статора, рабочее колесо состоит из вертикального вала и радиально-последовательно скрепленных с ним в горизонтальной плоскости ступицы, диска-фермы и собственно короткозамкнутого ротора, нижняя часть вала установлена в центре окружности фундамента в нижнем опорном узле в подшипниках масляной ванны, верхняя часть вала установлена в верхнем опорном узле, состоящем из упорных колонн, упорных балок и осевого опорно-центровочного узла, в котором упорные колонны сооружены симметрично вокруг подиума с равным промежутком между ними с усиленным фундаментом, соединенным монолитно с фундаментом, вверху снабжены крепежными элементами, которыми скреплены внешними концами упорные балки, а внутренние концы их скреплены с осевым опорно-центровочным узлом, снабженным радиальными подшипниками, в котором установлена верхняя часть вала рабочего колеса, соединенная посредством муфты сцепления с потребителем, ступица выполнена в виде диска и соединена в центральной части с валом посредством узла передачи момента вращения, а с внешней с диском-фермой диаметром несколько метров и более, состоящего из радиально-кольцевого объемного жесткого каркаса с верхней и нижней обшивкой, снабженного в периферийной торцевой части собственно короткозамкнутым ротором, выполненным из цилиндра алюминиевого сплава радиальной толщины z с наружным радиусом R от оси вала, высотой h, снабженного внедренными в него через равный интервал «заподлицо» с наружной торцевой поверхностью стержнями из медного сплава, соединенными монолитно сверху и снизу медными шинами в виде обручей, жестко соединенными с радиально-кольцевым каркасом, рабочее колесо по высоте установлено так, что его собственно короткозамкнутый ротор находится напортив сердечника статора и совпадает с ним по высоте, при этом их разделяет по всей окружности цилиндра воздушный зазор величиной δ, обмотку статора соединяют с внешним источником тока.

Конструкция асинхронного электрического двигателя показана на представленных чертежах. На фиг.1 показана схематически конструкция аксиального электрического двигателя, общий вид, разрез по вертикальной диаметральной плоскости («А-А»). На фиг.2 показана схематически конструкция аксиального электрического двигателя, вид сверху. На фиг.3 схематически показана активная индуктивная часть рабочего колеса аксиального электрического двигателя, разрез по вертикальной радиальной плоскости.

Условные обозначения в тексте.

R - (м) радиус ротора аксиального электрического двигателя, расстояние от оси вала до наружной поверхности цилиндра из алюминиевого сплава,

z - (мм) радиальная толщина цилиндра из алюминиевого сплава,

h - (мм) высота сердечника статора, высота цилиндра из алюминиевого сплава собственно ротора (в технической литературе эта величина обозначается символом, т.к. направлена вдоль оси машины),

δс - (мм) величина воздушного зазора между статором и ротором в длительном стояночном положении при низкой температуре окружающей среды.

δр - (мм) величина воздушного зазора между статором и ротором в рабочем состоянии (длительный установившийся режим работы при номинальных оборотах, номинальном токе, номинальной или повышенной температуре).

Позиции на чертежах.

Аксиальный электрический двигатель устроен (см. фиг.1, 7). На некотором участке 1 земли подготавливают горизонтальную площадку, размером порядка 1,5 R, на ней выполняют горизонтальный фундамент 2. В соответствии с документацией под будущим фундаментом прокладывают технологические туннели, трубопроводы, кабели и т.п., а в самом фундаменте устанавливают люки, анкеры, датчики оборудования. По окружности фундамента сооружают подиум 3, который снабжен анкерами для крепления установочной плиты 4, которая по всей ее наружной поверхности должна быть строго выверена в горизонтальной плоскости. На установочной плите 4 сооружают статор 5, кольцевой сердечник магнитопровода которого высотой h собирают из пластин шихтованной электротехнической стали и спрессовывают прижимной плитой 6 двумя рядами стягивающих шпилек 7. При сборке статора 5 выполняют условия: отсутствие заусенцев на пластинах статора и точное, в пределах 1-2 мм, соответствии внутреннего диаметра магнитопровода статора размеру (R+δp) мм, после чего в его пазы укладывают обмотку 8 статора, провода от которой подводят к источнику трехфазного тока.

Рабочее колесо 10 состоит из вертикального вала 9 и радиально-последовательно скрепленных с ним в горизонтальной плоскости ступицы, диска-фермы и собственно короткозамкнутого ротора. Ступица выполнена в виде диска и соединена в центральной части с валом 9 посредством узла передачи момента вращения, например, шпоночного или шлицевого соединения, а с внешней стороны с диском-фермой, выполненной радиально-кольцевым объемным каркасом с верхней и нижней обшивкой. Диск-ферма и ступица соединены посредством разъемного болтового соединения.

В периферийной торцевой части рабочее колесо 10 снабжено собственно короткозамкнутым ротором, который выполнен из цилиндра алюминиевого сплава 11 (см. фиг.3) радиальной толщины z, внешний радиус которого R от оси вала 9, высотой h, снабженного внедренными в него через равный интервал «заподлицо» с наружной торцевой поверхностью стержнями 12 из медного сплава, соединенными монолитно, например сваркой, сверху и снизу медными шинами 13 в виде обручей, жестко соединенными с радиально-кольцевым каркасом.

Рабочее колесо 10 аксиального электрического двигателя может быть выполнено разного размера, от диаметра порядка 1,5-2,5 м до десятков метров. От величины диаметра зависит его конструкция, применяемые материалы, технология изготовления, сборки и методы доставки потребителю. При малых размерах рабочего колеса 10 (фиг.1), его выполняют единым неразъемным узлом и транспортируют в специальной таре к месту сооружения аксиального электрического двигателя. При больших размерах рабочего колеса 10 его конструкция и технология изготовления усложняются в связи с необходимостью выполнения ряда противоречивых требований, что является предметом отдельных технических решений.

Рабочее колесо 10 устанавливают в центре круга фундамента 2. Нижняя часть его вала 9 установлена в нижнем опорном узле 14 в подшипниках опорно-масляной ванны. Верхний опорный узел с валом 9 выполнен следующим образом. На том же участке 1 земли за подиумом 3 по окружности с равным интервалом сооружают упорные колонны 15, которые выполняют монолитно с фундаментом 2, верхняя часть их снабжена крепежными элементами, например болтами, с которыми они соединяются с внешними концами упорных балок 1-6, внутренние концы которых также посредством болтового соединения скреплены с осевым опорно-центровочным узлом 17, снабженным радиальными подшипниками, в которые устанавливают верхнюю часть вала. 9. Количество упорных балок 16 зависит от диаметра рабочего колеса 10 и определяется в результате прочностного расчета корпуса, верхний опорный узел должен обеспечить жесткость всей конструкции аксиального электрического двигателя при максимальных вращающих моментах рабочего колеса 10.

Рабочее колесо 10 устанавливают так, чтобы его короткозамкнутый ротор высотой h был точно установлен напротив сердечника статора 5 и совпадал с ним по высоте h, при этом внешнюю поверхность короткозамкнутого ротора рабочего колеса 10 и внутреннюю поверхность магнитопровода статора 5 по всей окружности должен разделять установочный (стояночный) воздушный зазор δ с постоянной величины, ориентировочно 6-9 мм.

При создании рабочего колеса 10 на определенную частоту вращения и заданный вращающий момент необходимо выполнить не только расчет прочности в статике, но и динамический расчет, при этом учесть, что механические напряжения во всех узлах не должны превосходить предела прочности материала, а в наиболее опасных и важных конструктивных элементах - короткозамкнутых медных шинах-ободах не должны превосходить предела текучести меди.

Кроме того, радиальная деформация от махового момента центробежных сил (упругая деформация растяжения), суммированная с продольной деформацией от теплового удлинения в установившемся рабочем режиме при номинальной нагрузке, не должна превышать определенной величины, являясь в то же время полезной деформацией, уменьшающей воздушный зазор до величины δр, положительно влияющей на характеристики асинхронного электрического двигателя.

Аксиальный электрический двигатель работает: при включении обмотки 8 статора к источнику переменного электрического тока, в магнитопроводе сердечника статора 5 возникает вращающееся электромагнитное поле, которое взаимодействует с собственно короткозамкнутым ротором рабочего колеса 10 и вращает его с расчетной угловой частотой. Окружная сила, действуя на расстоянии R создает непрерывный момент вращения расчетной величины валу 9, который через муфту сцепления 18 приводит в действие нагрузку - насос большой производительности для подачи пульпы (тяжелая горная порода с водой) на агрегаты обогатительной фабрики.

Техническая эффективность изобретения в том, что создана конструкция экономичного аксиального электрического двигателя переменного тока, передающего нагрузке момент вращения значительной величины.

Аксиальный электрический двигатель переменного тока, содержащий закрытый корпус с узлами крепления к опоре, размещенный в нем неподвижный статор, состоящий из сердечника с обмоткой, и подвижный (вращающийся) короткозамкнутый ротор с горизонтальной осью вращения, установленный в подшипниках фланцев с обеих сторон статора, скрепленных с корпусом, отличающийся тем, что двигатель выполнен на участке земли недвижимым, стационарным открытым с неподвижным статором и подвижным (вращающимся) рабочим колесом с вертикальной осью вращения, корпус его, с нижним и верхним опорными узлами, выполнен горизонтальным фундаментом в виде круга, по окружности которого сооружен кольцевой подиум с укрепленной на нем сверху выверенной горизонтальной установочной плитой, на которой собран кольцевой сердечник магнитопровода статора высотой h из шихтованной электротехнической стали, спрессованный прижимной плитой и стянутый рядами шпилек с установочной плитой, в пазы сердечника уложена обмотка статора, рабочее колесо состоит из вертикального вала и радиально-последовательно скрепленных с ним в горизонтальной плоскости ступицы, диска-фермы, и собственно короткозамкнутого ротора, нижняя часть вала установлена в центре окружности фундамента в нижнем опорном узле в подшипниках масляной ванны, верхняя часть вала установлена в верхнем опорном узле, состоящем из упорных колонн, упорных балок и осевого опорно-центровочного узла, в котором упорные колонны сооружены симметрично вокруг подиума с равным промежутком между ними с усиленным фундаментом, соединенным монолитно с фундаментом, вверху снабжены крепежными элементами, которыми скреплены внешними концами упорные балки, а внутренние концы их скреплены с осевым опорно-центровочным узлом, снабженным радиальными подшипниками, в котором установлена верхняя часть вала рабочего колеса, соединенная посредством муфты сцепления с потребителем, ступица выполнена в виде диска и соединена в центральной части с валом посредством узла передачи момента вращения, а с внешней - с диском-фермой диаметром несколько метров и более, состоящим из радиально-кольцевого объемного жесткого каркаса с верхней и нижней обшивкой, снабженным в периферийной торцевой части собственно короткозамкнутым ротором, выполненным из цилиндра алюминиевого сплава радиальной толщины z с наружным радиусом R от оси вала высотой h, снабженного внедренными в него через равный интервал «заподлицо» с наружной торцевой поверхностью стержнями из медного сплава, соединенными монолитно сверху и снизу медными шинами в виде обручей, жестко соединенными с радиально-кольцевым каркасом, рабочее колесо по высоте установлено так, что его собственно короткозамкнутый ротор находится напротив сердечника статора и совпадает с ним по высоте, при этом их разделяет по всей окружности цилиндра воздушный зазор величиной δ, обмотку статора соединяют с внешним источником тока.

Проект аксиального двигателя внутреннего сгорания конструкции Г.И. Смоллбоуна никого не заинтересовал и остался в виде набора чертежей. Тем не менее, идея не пропала. Вскоре появились аналогичные проекты, оказавшиеся более успешными. В конце первого десятилетия прошлого века тематикой аксиальных двигателей занялся американский инженер У.Г. Макомбер. Благодаря удачной конструкции и рвению своего создателя новый аксиальный двигатель даже дошел до серийного производства и использования на практике.

Уолтер Гленн Макомбер с детства проявлял интерес к инженерному делу. К примеру, в 14 лет он из подручных материалов собрал простейший паровой двигатель, который, однако, развивал достаточно высокую для самоделки мощность. В дальнейшем Макомбер предложил несколько других изобретений, пригодных для использования в различных сферах. В конце первого десятилетия XX века изобретатель занялся созданием аксиального двигателя внутреннего сгорания. Макомбер видел ситуацию в области двигателестроения и, по-видимому, желал принять участие в развитии конструкций моторов.

Общая схема двигателя Макомбера

В 1909 году У.Г. Макомбер подготовил комплект чертежей и собрался патентовать свое изобретение. Кроме того, он основал собственную фирму, которая в дальнейшем должна была заниматься производством новых двигателей. Мастерские компании Macomber Rotary Engine Company расположились в Лос-Анджелесе. Планировалось освоить сборку новых моторов, и, в перспективе, заключить контракты на их поставку таких изделий производителям автомобильной или авиационной техники.

По некоторым данным, первая заявка на патент была подана Макомбером в 1909 году. Тем не менее, в большинстве материалов по этой теме фигурируют более поздние документы. К примеру, одна из заявок была подана в апреле 1911 года и привела к получению патента в октябре 1912-го. Кроме того, усовершенствованный вариант аксиального двигателя был запатентован в 1916 году. Таким образом, У.Г. Макомбер заботился о своих изобретениях, постоянно подавая заявки на патентование усовершенствованных версий нового двигателя.

Несмотря на добавление или изменение различных деталей, аксиальные двигатели Макомбера в целом имели схожую архитектуру. Дорабатывались различные узлы, но компоновка, количество цилиндров, способ управления мощностью и т.д. оставались одинаковыми. Изобретатель предложил использовать блок из семи цилиндров с воздушным охлаждением. Двигатель был построен по аксиальной схеме с вращающимся блоком цилиндров. Макомбер посчитал, что такая система позволит улучшить охлаждение цилиндров за счет постоянного обдува без использования дополнительных вентиляторов.



Чертежи из патента 1912 г. Изображения Theoldmotor.com

Конструкция аксиального двигателя Макомбера условно разделялась на две основные части: картер с шайбовым механизмом и блок цилиндров. Кроме того, в составе двигателя присутствовали некоторые другие агрегаты, закрепленные на основных узлах. За счет ряда оригинальных предложений автору проекта удалось значительно уменьшить размеры двигателя в сравнении с иными моторами того времени.

Аксиальный двигатель Макомбера оснащался семью цилиндрами, расположенными в одном блоке, параллельно с валом. Для лучшего охлаждения на внешней поверхности цилиндров предусматривалось оребрение. Такие «радиаторы» и постоянное вращение блока цилиндров, как ожидалось, должны были обеспечивать приемлемое охлаждение. Внутри цилиндров помещались поршни с шарнирно закрепленными шатунами. Применение шарниров было связано с оригинальной системой регулировки мощности двигателя путем изменения полного и рабочего объема цилиндра, а также степени сжатия.

Система впуска и выхлопа размещалась на головной части цилиндра. Для упрощения их конструкции Макомбер предложил использовать для подачи бензовоздушной смеси полый вал двигателя. Цилиндры соединялись с валом при помощи трубок, по которым происходила раздача смеси. Выхлоп производился через патрубки в окружающее пространство. На ранней версии двигателя общий выхлопной коллектор не предусматривался.

Попеременное открытие впускного и выхлопного клапана должно было осуществляться за счет специального механизма. Подпружиненные клапаны крепились в верхней части цилиндра, над ними имелось качающееся коромысло. На валу предусматривался кулачок сложной формы, который во время вращения должен был поднимать или опускать ближайший конец коромысла клапанов. При нажатии на коромысло утапливался впускной клапан, при подъеме – выхлопной.

При помощи шатунов поршни цилиндров были связаны с шайбовым механизмом. Основной деталью последнего была планшайба сложной формы. На шарнире, расположенном на продольной оси двигателя, крепилось опорное кольцо с подшипником для маховика с креплениями для шатунов. Во время работы двигателя шатуны должны были проворачивать и качать маховик. За счет жесткого закрепления некоторых деталей вращался не только маховик, но и блок цилиндров.

Возвратно-поступательное движение поршней преобразовывалось во вращение главного вала в соответствии с принципом работы механизма «планшайба-стержни». При этом, однако, с валом был жестко связан не качающийся маховик, а блок цилиндров. Таким образом, роль планшайбы в двигателе Макомбера фактически играли цилиндры. Тем не менее, как показала практика, подобная архитектура двигателя не оказывала серьезного влияния на его характеристики.

Большой интерес представляет система регулировки мощности и других параметров двигателя. Предполагалось, что новый мотор сможет работать в определенном диапазоне оборотов, мощности и крутящего момента. Для этого в его конструкцию был введен механизм изменения объема цилиндра. Примечательно, что на чертежах в патенте 1916 года подобные детали отсутствуют. Вероятно, было решено отказаться от специальных механизмов ввиду появления более совершенных коробок передач.

На главной раме двигателя или мотораме автомобиля/самолета предлагалось жестко крепить только картер шайбового механизма и систему изменения объема цилиндров. Блок цилиндров при этом связывался с последней. При необходимости водитель или пилот должен был сдвигать специальный рычаг. При этом две зубчатые передачи (в некоторых вариантах проекта – одна) должны были сводить друг к другу или разводить в стороны блок цилиндров и маховик шайбового механизма. За счет этого можно было изменить рабочий объем цилиндра, степень сжатия смеси и другие параметры. При разведении цилиндров и маховика в стороны мощность двигателя падала, при сведении – росла.


Аэроплан Ч. Уолша в полете, май 1911 г. Фото Cynthiashidesertblog.blogspot.ru

По чертежам, подававшимся вместе с заявкой на патент, был выполнен аксиальный двигатель Macomber Model A. Этот мотор предлагался для использования на автомобилях и самолетах. Следует отметить, что предложенный двигатель был интересен в первую очередь именно как силовая установка для летательных аппаратов. Он имел сравнительно малый вес и небольшие габариты при достаточно высокой мощности. При определенных обстоятельствах двигатель Макомбера вполне мог стать реальной альтернативой звездообразным ротативным двигателям того времени.

В рекламном буклете двигателя Model A сообщалось, что он развивает мощность до 50-60 л.с. при 800-1400 оборотах в минуту. Семь цилиндров двигателя имели внутренний диаметр 4,25 дюйма. Максимальный ход поршней составлял 4,25 дюйма. При необходимости последний мог изменяться. Отмечались крайняя простота клапанного механизма цилиндров, отсутствие движущихся деталей в системе подачи смазки и другие особенности конструкции. Также в качестве преимущества представлялись малые габариты и вес. Максимальный диаметр двигателя составлял 19 дюймов (48,25 см), длина – 34 дюйма (86,36 см), а масса с дополнительным оборудованием не превышала 250 фунтов (113,4 кг). Для установки воздушного винта имелся вал длиной 6 дюймов (15,24 см).

Фирма Macomber Rotary Engine Company планировала собирать новые двигатели под заказ. Цена одного комплекта составляла 2 тыс. долларов. При заказе моторов покупателю следовало внести четверть стоимости контракта. Остальная сумма передавалась производителю после сдачи заказа.

Объемы производства двигателей Model A неизвестны. По разным данным, было собрано не более нескольких десятков таких изделий. Известно, что, как минимум, один подобный двигатель использовался в авиации. В мае 1911 года американский пионер авиации Чарльз Уолш поднял в воздух очередной свой самолет, оснащенный двигателем Макомбера. Иные случаи использования подобных моторов на практике неизвестны.

В 1914 году У.Г. Макомбер занялся продвижением двигателя своей конструкции в автомобильной сфере. Уже в 1915-м появился первый автомобиль с аксиальным двигателем. Опытный образец имел классическую для машин того времени компоновку со сравнительно длинным моторным отсеком и сиденьями, расположенными над задней осью. При этом особая конструкция двигателя позволила заметно сократить размеры капота и придать ему характерную форму.


Первый автомобиль с двигателем Макомбера, 1915 г. Фото Cynthiashidesertblog.blogspot.ru

В дальнейшем Компания Macomber Rotary Engine разработала и предложила потенциальным покупателям несколько вариантов автомобиля с аксиальным двигателем. Дальнейшее совершенствование конструкции мотора позволило повысить характеристики без заметного роста габаритов. Более того, удалось даже сократить размеры двигателя. Так, в 1916 году был предложен автомобиль с нехарактерно небольшим моторным отсеком. При сохранении традиционных для того времени обводов капот вмещал двигатель необходимой мощности.


Автомобиль Eagle-Macomber, 1916 г. Фото Theoldmotors.com

На автомобиле с уменьшенным капотом использовался новый вариант двигателя с пятью цилиндрами. Патент на такую версию мотора был получен в ноябре 1916 года. Автомобильный вариант двигателя имел пять цилиндров, расположенных вокруг центрального главного вала. Общее строение и принцип работы остались прежними, однако были доработаны некоторые отдельные элементы. К примеру, маховик закрепили на опорном кольце, теперь жестко соединенном с картером механизма. Также были изменены некоторые другие узлы.


Пятицилиндровый двигатель Макомбера

Пятицилиндровый аксиальный двигатель получил новый кожух-корпус. Все агрегаты помещались в корпус, состоявший из нескольких цилиндрических поверхностей разного диаметра. Кроме того, со стороны блока цилиндров на корпусе имелся раструб воздухозаборника. Во время работы через него должен был поступать воздух, используемый для охлаждения цилиндров. К выхлопным патрубкам цилиндров добавили трубки, расположенные параллельно продольной оси двигателя. По этим трубкам газы должны были поступать в специальный коллектор, расположенный вокруг шайбового механизма. Нагретый цилиндрами воздух и выхлопные газы в итоге попадали в изогнутый канал и выбрасывались через специальный патрубок.



Чертежи из патента 1916 г. Изображения Theoldmotor.com

Автомобили с аксиальными двигателями выпускались под маркой Eagle-Macomber. В силу разных причин они не пользовались большой популярностью и производились исключительно под заказ. По имеющимся данным, в общей сложности было построено не более полусотни машин «Игл-Макомбер», вскоре переданных заказчикам. Количество выпущенных моторов вряд ли сильно отличается от числа автомобилей.

Фирма Macomber Rotary Engine Company работала до 1918 года. Из-за низкого спроса на свою продукцию, как на автомобили, так и на двигатели, она была вынуждена свернуть производство. К этому времени массовые попытки разработать новый тип двигателя почти полностью прекратились. В автомобильной сфере свое место прочно заняли рядные двигатели, а в авиации закрепились звездообразные. В дальнейшем в двигателестроении наблюдались разные тенденции, но аксиальные двигатели так и не смогли получить широкого распространения. Не видя перспектив, У.Г. Макомбер оставил это направление и занялся более перспективными проектами.

По материалам сайтов:
http://douglas-self.com/
http://theoldmotor.com/
http://cynthiashidesertblog.blogspot.ru/
http://american-automobiles.com/
http://freepages.genealogy.rootsweb.ancestry.com/

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

Изобретение относится к двигателям внутреннего сгорания, а именно к роторным двигателям. Техническая задача, решаемая изобретением: повышение надежности работы конструкции, в частности снижение износа уплотнений лопаток. Двигатель включает крышки, между которыми установлен на оси ротор, в направляющих прорезях которого установлены лопатки. Лопатка имеет форму уплощенного цилиндра, а на ее боковой поверхности выполнены два тангенциальных паза, расположенные диаметрально противоположно. Крышки со стороны, обращенной к ротору, имеют кольцевые выемки, образующие кольцевой канал для прохождения рабочего тела, разделенный ротором. Кольцевой канал имеет в сечении, проходящем через ось, форму окружности с диаметром, соответствующим диаметру лопатки. Канал волнообразно изгибается по синусоиде симметрично относительно среднего сечения ротора, перпендикулярного оси. В крышках имеются окна для впуска воздуха и выпуска отработанных газов. В теле каждой крышки имеются соединенные с каналом камеры, в которых размещены топливные форсунки, а при необходимости калоризаторы. Уплотнительные кольца свободно установлены в пазах лопаток, выполненных на боковой поверхности их дисковых участков. 4 ил.

Изобретение относится к двигателям внутреннего сгорания, а именно к роторным двигателям. Известен роторно-поршневой двигатель Ванкеля [А.Ф.Крайнев. Словарь-справочник по механизмам. - М.: Машиностроение, 1987 г., стр. 40]. В двигателе трехгранный ротор размещен внутри цилиндрического корпуса, профиль которого выполнен по эпитрохоиде. Ротор установлен так, что он может вращаться на эксцентриковом валу и жестко соединен с зубчатым колесом, которое взаимодействует с неподвижным зубчатым колесом. Ротор с зубчатым колесом обкатывается по неподвижному колесу так, что его грани скользят по внутренней поверхности корпуса, отсекая переменные объемы камер внутреннего канала. При этом канал для прохождения рабочего тела образован между внутренней поверхностью корпуса и поверхностью ротора. Корпус снабжен окнами для подачи топливной смеси и выхода отработавших газов, а также соединенной с каналом камерой с установленной в ней свечой зажигания. Двигатель не имеет массивных деталей, совершающих возвратно-поступательное движение, благодаря чему повышается плавность хода, уменьшается уровень шума и вибрации при работе. Однако конструкция имеет недостатки, связанные с наличием зубчатых колес и эксцентрикового вала, что снижает надежность его работы. В качестве прототипа выбран роторный аксиальный двигатель [Заявка PCT 94/04794, МКИ F 01 C 1/344, опубл. 03.03.94]. Двигатель имеет корпус, внутри которого на оси вращения закреплен дисковый ротор с установленными в его прорезях лопатками. Корпус из двух соединенных между собой массивных крышек. В кольцевой выемке каждой крышки со стороны ротора установлена съемная вставка, формирующая конфигурацию канала для прохождения рабочего тела. Таким образом, можно считать, что каждя крышка выполнена составной. Это прием использован в прототипе для повышения технологичности изготовления массивной крышки с каналом заданной конфигурации, которая диктуется формой лопатки и законом ее осевого возвратно-поступательного перемещения. В прототипе используются лопатки в форме прямоугольных пластин, короткие стороны которых, обращенные к крышкам, имеют радиусное закругление. Соответствующую форму в поперечном сечении имеет кольцевой канал для прохождения рабочего тела, который разделен диском ротора на две равные по объему части. В направлении вдоль оси ротора канал волнообразно изгибается по периодическому закону, симметрично относительно среднего сечения ротора, перпендикулярного оси ротора. Волна в развертке на плоскости имеет форму трапеции. Крышки снабжены окнами для подачи воздуха и выхода отработавших газов, а также камерой, соединенной с каналом, в которой установлена топливная форсунка. Прототип, в отличие от приведенного выше аналога, имеет аксиальное расположение дискового ротора и полностью уравновешен, а потому более надежен в эксплуатации. Однако при работе двигателя лопатки испытывают значительные пиковые нагрузки, вследствие ступенчатых изгибов канала. Кроме того, сложная система неподвижных уплотнений на лопатке приводит к их неравномерному износу в процессе работы. Уплотнения, находящиеся на закруглениях лопатки изнашиваются существенно быстрее, чем на прямых поверхностях, что приводит к потере герметичности рабочих камер, а следовательно, к падению мощности или даже к поломке двигателя. В основу изобретения поставлена задача повышения надежности работы конструкции. Поставленная задача решается тем, что в роторном аксиальном двигателе, включающем корпус, состоящий из соединенных между собой двух крышек, между которыми установлен закрепленный на оси ротор, на периферийной части которого имеются направляющие прорези, ориентированные в радиальных плоскостях вдоль оси ротора, в которых установлены лопатки с обеспечением возможности их возвратно-поступательного движения в направлении, параллельном оси ротора, на внутренней поверхности каждой крышки выполнена кольцевая выемка такой конфигурации, что при соединении крышек образуется кольцевой канал для прохождения рабочего тела, канал имеет в сечении, проходящем через ось ротора форму по форме лопатки и волнообразно изгибается по периодическому закону, симметрично относительно среднего сечения ротора, перпендикулярного его оси, при этом лопатки снабжены уплотнительными элементами, периферийная часть ротора с установленными лопатками размещена внутри кольцевого канала, а каждая крышка снабжена окнами для подачи воздуха в кольцевой канал и выхода отработавших газов, а также камерой, соединенной с кольцевым каналом, в которой установлена топливная форсунка, согласно изобретению каждая лопатка имеет форму уплощенного цилиндра, на боковой поверхности которого имеются два тангенциальных паза, расположенных диаметрально противоположно, выполненных с обеспечением возможности размещения лопатки в направляющей прорези ротора, уплотнительные элементы установлены на боковой поверхности дисковых частей лопатки с обеспечением возможности их свободного перемещения по периметру дисковых частей лопатки, канал волнообразно изгибается по синусоиде. Изобретение иллюстрируется фигурами чертежей:

Фиг.1 - изометрия общего вида двигателя,

Фиг.2 - изометрия лопатки с уплотнительными элементами,

Фиг.3 - сечение А-А на фиг. 1 (по разъему крышки и ротора),

Фиг.4 - диаграмма рабочего процесса двигателя (развертка на плоскости кольцевого сечения по средней линии канала). Двигатель включает верхнюю крышку 1 и нижнюю крышку 2, соединенные болтами 3 через проставку 4. Ротор 5 закреплен на оси 6 с обеспечением возможности вращения на подшипниках 7. В направляющих прорезях ротора 5 на его периферийной части свободно установлены лопатки 8, имеющие форму уплощенного цилиндра. Крышки 1, 2 со стороны, обращенной к ротору 5, имеют кольцевые выемки 9, которые выполнены таким образом, что при сборе крышек в единую конструкцию образуется кольцевой канал 10 для прохождения рабочего тела, разделенный ротором 5. Кольцевой канал 10 имеет в сечении, проходящем через ось 6 форму окружности с диаметром, соответствующим диаметру лопатки. Кольцевой канал 10 волнообразно изгибается по синусоиде 11 симметрично относительно среднего сечения ротора 5, перпендикулярного оси 6. В крышках 1, 2 имеются окна 12 для впуска воздуха и окна 13 для выпуска отработанных газов. В теле каждой крышки имеются соединенные с каналом 10 камеры 14, в которых размещены топливные форсунки 15, а при необходимости калоризаторы (на фигурах не показаны). Лопатка 8 имеет на боковой поверхности два тангенциальных паза 16, расположенные диаметрально противоположно. Уплотнительные элементы - кольца 17 - могут быть свободно установлены в пазах, выполненных на боковой поверхности дисковых участков лопаток 8. Канал 10 делится ротором на две части, каждую из которых условно можно разделить на зоны: 18 - зона впуска воздуха, 19 - зона сжатия, 20 - зона рабочего хода, 21 - зона выпуска отработанных газов. При этом каждая рабочая зона верхней части канала сдвинута по отношению к аналогичной рабочей зоне нижней части канала на определенный угол. В случае, если "синусоида" канала имеет 2 периода, как показано на фиг. 4, то угол сдвига составляет 90 o . В двигателях с большей мощностью, а следовательно с большим диаметром ротора, целесообразно увеличивать количество периодов изгибов канала. В таком случае угол сдвига будет составлять меньшую величину. Двигатель работает следующим образом. В начальный момент пусковой механизм приводит во вращение ротор 5, и лопатки 8 начинают перемещаться по каналу 10. При этом в объем между соседними лопатками 8, находящимися в зоне 18 всасывается или нагнетается воздух через окно 12. Затем после прохождения окна обеими лопатками объем между ними уменьшается и происходит сжатие воздуха (зона 19). В зоне 20 рабочего хода из камеры 14 через форсунку 15 в сжатый воздух подается топливо, которое самовоспламеняется при высокой степени сжатия, либо поджигается при помощи калоризатора. Давление расширяющихся газов воздействует на лопатки 8 и вращают ротор 5. Отработанные газы выходят через окна 13 в зоне 21. В дальнейшем горение поддерживается непрерывной подачей топлива через форсунку 15. При работе двигателя лопатки 8 совершают сложное движение: возвратно-поступательное в прорезях ротора 5 и поступательное движение в кольцевом канале 10. Уплотнение рабочих камер между лопатками осуществляется кольцами 17. Ввиду того, что кольца установлены в пазах на лопатках свободно, они при движении лопаток проскальзывают по пазу, постоянно меняя свое положение, и следовательно, изнашиваются равномерно. Синусоидальная форма канала 10 обеспечивает плавность хода лопаток, что снижает их износ по сравнению с прототипом и повышает надежность работы. Заявляемый двигатель может работать по описанному циклу на любом жидком углеводородном топливе без изменения конструкции. В особых случаях, когда для достижения большой мощности двигателя диаметр лопатки существенно увеличивают, он может приближаться к критической величине. Чтобы этого избежать в крышках выполняют несколько концентрических каналов, а в роторе - несколько концентрических рядов прорезей с соответственным количеством установленных в них лопаток меньшего диаметра. Изобретение найдет промышленное применение в автомобилестроении, в авиастроении и может быть использовано в переносных энергоустановках.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Роторный аксиальный двигатель, включающий корпус, состоящий из соединенных между собой двух крышек, между которыми установлен закрепленный на оси ротор, на периферийной части которого имеются направляющие прорези, ориентированные в радиальных плоскостях вдоль оси ротора, в которых установлены лопатки с обеспечением возможности их возвратно-поступательного движения в направлении, параллельном оси ротора, на внутренней поверхности каждой крышки выполнена кольцевая выемка такой конфигурации, что при соединении крышек образуется кольцевой канал для прохождения рабочего тела, канал имеет в сечении, проходящем через ось ротора, форму по форме лопатки и волнообразно изгибается по периодическому закону, симметрично относительно среднего сечения ротора, перпендикулярного его оси, при этом лопатки снабжены уплотнительными элементами, периферийная часть ротора с установленными лопатками размещена внутри кольцевого канала, а каждая крышка снабжена окнами для подачи воздуха в кольцевой канал и выхода отработавших газов, а также камерой, соединенной с кольцевым каналом, в которой установлена топливная форсунка, отличающийся тем, что каждая лопатка имеет форму уплощенного цилиндра, на боковой поверхности которого имеются два тангенциальных паза, расположенных диаметрально противоположно, выполненных с обеспечением возможности размещения лопатки в направляющей прорези ротора, уплотнительные элементы установлены на боковой поверхности дисковых частей лопатки с обеспечением возможности их свободного перемещения по периметру дисковых частей лопатки, канал волнообразно изгибается по синусоиде.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама