THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

При работе над некоторыми конструкциями питающимися от автономного источника питания, возник вопрос в выборе последних.

На мой взгляд из доступных лучшие LI-ION аккумуляторы, тем более, что у меня есть некое количество незащищенных банок от ноутбуковских батарей. Но с ними возникает уже широко известная проблема - их сложный алгоритм зарядки при несоблюдении которого постоянно не дозаряжен аккумулятор быстро выйдет со строя, а при перезаряде также, но с активным разрушением. Резкий перезаряд наступает при превышении напряжения на заряжаемом элементе на 1-2 сотых вольта от требуемого, проследить такое практически невозможно, поэтому производители рекомендуют автоматические ограничители.

Есть решения и готовые устройства для этих целей как приставки к зарядным устройствам для незащищенных аккумуляторов, так и встраиваемые в аккумулятор.

В общем, для незащищенных аккумуляторов нужен балансир - ограничитель напряжения заряда и защита от чрезмерного разряда. Делать множество мелких девайсов на каждую банку пока нету смысла, решил сделать приставку к зарядному устройству.

Интересное и простое решение нашлось у чехов . Такой себе мощный стабилитрон, срабатывающий при граничном для элемента напряжении. Повторяемость схемы отличная, при заведомо исправных деталях.

Схема одного модуля.

Балансир составлен из трех идентичных независимых модулей и предназначен для зарядки одно элементного аккумулятора, батареи из двух или трех последовательно соединенных банок.

Зарядка одного Li-ION элемента возможна различными напряжениями, балансир здесь служит и как делитель напряжения если зарядное рассчитано на большее количество элементов..

Также и при зарядке двух последовательных элементов от различных напряжений

Заряд батареи из трех элементов. Для 4 и более банок, думаю решение понятно - увеличение количества модулей в схеме.

Вид готового ограничителя, реализуемого фирмой "E-Fly".

То, что получилось у меня. С таким теплоотводом заряжая током до 1-3 ампер соединеных несколько батарей паралельно или при очень большой разницы в емкости элементов по окончании заряда могу не бояться за здоровье транзисторов.

С задранной защитной панелью.

При исполнении без теплоотводов транзисторы смогут выдержать ток до 0.5 А, при больших токах (до 3-х Ампер) нужна хорошая теплоотдача.

Нагрев транзисторов происходит только при достижении аккумулятора граничного напряжения зарядки, когда лишнее напряжение будет гасится сопротивлением открытого транзистора. В этом и заключается принцип защиты от перезаряда. Это очень удобно при зарядке последовательной батареи с неравномерно заряженных элементов. При достижении граничного напряжения элемента, открывается транзистор и основной ток идет мимо аккумулятора, другие аккумуляторы батареи, которые еще не достигли конечного заряда, продолжают заряжаться. Отключенный таким образом аккумулятор продолжает заряжаться очень малым током стабилизированного напряжения (капельный заряд). При срабатывании защиты всех модулей, заряд условно закончен и систему можно отключать, для простого устройства такая работа вполне прилична.

Настройка

Порог срабатывания ограничителя 4.200 вольта, при первоначальной настройке устройства нужно с большой точностью сделать регулировку этого значения.

На устройство без подсоединенных аккумуляторов подается напряжение от источника питания, зарядного устройства с ограничителем тока в пределах 0.15-1А. Напряжение можно подавать как на отдельный модуль 4.5-5 вольт так и на всю схему 13.5-15 вольт, и подстроечным резистором в каждом модуле выставляем порог зажигания светодиода 4.16 вольта, контролируя на выходных клеммах напряжение. Все модули должны быть отрегулированы на один порог с точностью до 0.001 вольта.

Даже новые, но дешевые вольтметры и прочие комбинированные приборы имеют погрешности, это надо учесть. Источник питания использовать стабилизированный с хорошей фильтрацией. Зарядное устройство для которого предназначен этот ограничитель также должно иметь функцию ограничения тока, хороший выходной фильтр и быть рассчитано на напряжение, которое равно суммарному напряжению батареи заряженных аккумуляторов + 1-3 вольта. Если использовать этот девайс в качестве балансира для выравнивания банок планируется с готовым зарядным для аккумуляторов в котором уже автоматически контролируется напряжение полного заряда с последующим отключением, нужно узнать порог этого отключения, и регулировать ограничитель уже под имеющееся зарядное устройство, это может быть 4.10 - 4.19 вольт или типа того.

Я регулировал порог срабатывания так:

Последовательно соединил лабораторный блок питания, автомобильную лампочку 12 вольт 1 ампер в качестве ограничителя тока и сам ограничитель. Подал напряжение 15 вольт и меряя на выходе модуля мультиметром напряжение регулировкой подстроечного добивался показания 4.16 вольта на каждом модуле, так как не имелось под руками точнее прибора, да и блок питания имеет на выходе некую пульсацию напряжения не смотря на все фильтра. Этот блок питания и служит мне зарядным устройством.

Вместо указанных мощных транзисторов можно применить КТ818, цоколевка у них немного иная и без переделки печатной платы их можно установить со стороны дорожек, припаяв как корпуса DPAK или “лицом“ в обратную сторону.

Печатная плата в формате Sprint-layout 6.0 , при печати делать зеркально. Позиционные номера деталей указаны в лае.

Иногда есть необходимость в зарядке Li-Ion аккумулятора, состоящего из нескольких последовательно соединенных ячеек. В отличие от Ni-Cd аккумуляторов, для Li-Ion аккумуляторов необходима дополнительная система управления, которая будет следить за равномерностью их заряда. Зарядка без такой системы рано или поздно приведет к повреждению элементов аккумулятора, и вся батарея будет неэффективна и даже опасна.

Балансировка — это режим заряда, который контролирует напряжение каждой отдельной ячейки в батареи аккумулятора и не допускает превышения напряжения на них выше установленного уровня. Если одна из ячеек зарядиться раньше остальных, балансир берет на себя избыточную энергию и переводит ее в тепло, не допуская превышения напряжения заряда конкретной ячейки.

Для Ni-Cd аккумуляторов нет необходимости в такой системе, поскольку каждый элемент батареи при достижении своего напряжения перестает принимать энергию. Признак заряда Ni-Cd — это увеличение напряжения до определенного значения, с последующим его снижением на несколько десятков мВ и повышением температуры, поскольку излишняя энергия переходит в тепло.

Перед зарядкой Ni-Cd должны быть разряжены полностью, в противном случае возникает эффект памяти, который приведет к заметному снижению емкости, и восстановить ее можно только путем нескольких полных циклов заряда/разряда.

С Li-Ion аккумуляторами все наоборот. Разрядка до слишком низких напряжений вызывает деградацию и необратимое повреждение с увеличением внутреннего сопротивления и уменьшением емкости. Также зарядка полным циклом быстрее изнашивает аккумулятор, чем в режиме подзарядки. Аккумулятор Li-Ion не проявляет симптомов заряда как у Ni-Cd, так что зарядное устройство не может обнаружить момент полного заряда.

Li-Ion как правило заряжают по методу CC/CV, то есть, на первом этапе заряда устанавливают постоянный ток, например, 0,5 С (половина от емкости: так для для аккумулятора емкостью 2000 мАч ток заряда составит 1000мА). Далее при достижении конечного напряжения, которое предусмотрел производитель (например, 4,2 В), заряд продолжают стабильным напряжением. И когда ток заряда снизится до 10..30мА аккумулятор можно считать заряженным.

Если у нас батарея аккумуляторов (несколько аккумуляторов соединенных последовательно), то мы заряжаем, как правило, только через клеммы на обоих концах всего пакета. При этом мы не имеем никакой возможности контролировать уровень заряда отдельных звеньев.

Возможно, что будет так, что один из элементов будет иметь более высокое внутреннее сопротивление или чуть меньшую емкость (в результате износа аккумулятора), и он быстрее остальных достигнет напряжение заряда 4,2 В, в тоже время у остальных будет только по 4,1 В, и вся батарея не покажет полный заряд.

Когда напряжение батареи достигнет напряжение заряда, может оказаться так, что слабый элемент зарядиться до 4,3 В или даже больше. С каждым таким циклом такой элемент будет все больше и больше изнашиваться, ухудшая свои параметры, до тех пор, пока это не приведет к выходу из строя всей батареи. Мало того, химические процессы в Li-Ion нестабильны и при превышении напряжения заряда значительно повышается температура аккумулятора, что может привести к самовозгоранию.

Простой балансир для li-ion аккумуляторов

Что же тогда делать? Теоретически самый простой способ заключается в использовании стабилитрона, подключенного параллельно каждому элементу батареи. При достижении напряжения пробоя стабилитрона, он начнет проводить ток, не позволяя повышаться напряжению. К сожалению, стабилитрон на напряжение 4,2 В не так легко найти, а 4,3 В уже будет слишком много.

Выходом из данной ситуации может быть применение популярного . Правда в этом случае ток нагрузки не должен превышать более 100 мА, что очень мало для заряда. Поэтому ток необходимо усилить при помощи транзистора. Такая схема, подключенная параллельно к каждой ячейки, защитит ее от перезаряда.

Это слегка измененная типовая схема подключения TL431, в datasheet ее можно найти под названием „hi-current shunt regulator” (сильноточный регулятор шунта).



Особенности:

-Балансир

-

-Контроль по току

-


Описание выводов :

Режим 4S: Режим 3S:
" B- " - общий минус батареи
" B1 " - +3,7В
" B2 " - +7,4В
" B3 " - +11,1В
" B+ " - общий плюс батареи

" B- " - общий минус батареи
" B1 " - закоротить на "B-"
" B2 " - +3,7В
" B3 " - +7,4В
" B+ " - общий плюс батареи
" P- " - минус нагрузки (зарядного устройства)
" P+ " - плюс нагрузки (зарядного устройства)

">



Особенности:

-Балансир : Плата контроля HCX-D119 для 3S/4S Li-Ion батареи имеет встроенную функцию балансира. При этом, в процессе заряда батареи, напряжение на кажой из ячеек выравнивается до значения 4,2В.
Для того, чтобы воспользоваться функцией выравнивания напряжения вам необходимо выдержать батарею под напряжением 12,6/16,8В не менее 60 - 120 мин после окончания активной фазы зарядки батареи. Для работы балансира важно, чтобы напряжение было не выше 12,6 / 16,8В: при превышении этих напряжений контроллер встанет в состоянии защиты и балансировка аккумуляторов производиться не будет

-Контроль напряжения на каждой из ячеек : При выходе напряжения на какой-либо из ячеек за пороговые значения вся батарея автоматически отключается.

-Контроль по току : При превышении током нагрузки пороговых значений вся батарея автоматически отключается.

- Возможность работы c батареями 3S (3 последовательных аккумулятора) Контроллер HCX-D119 имеет 100% совместимость с Li-Ion батареями 3S (11,1В). Для переключения контроллера в режим 3S необходимо перемкнуть контакты R8, а резистор R7 переместить на R11 (R7, при этом, остается разорванным) и площадку "B1" замкнуть на площадку "B-"


Описание выводов :

Режим 4S: Режим 3S:
" B- " - общий минус батареи
" B1 " - +3,7В
" B2 " - +7,4В
" B3 " - +11,1В
" B+ " - общий плюс батареи
" P- " - минус нагрузки (зарядного устройства)
" P+ " - плюс нагрузки (зарядного устройства)
" B- " - общий минус батареи
" B1 " - закоротить на "B-"
" B2 " - +3,7В
" B3 " - +7,4В
" B+ " - общий плюс батареи
" P- " - минус нагрузки (зарядного устройства)
" P+ " - плюс нагрузки (зарядного устройства)

Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650 , на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно - собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?

Теория

Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы - параллельно или последовательно.

Литий-ионные батареи просто подключить к БП нельзя - нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием "лишнего" электричества.

Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd - это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры - так что лишняя энергия сразу превращается в тепло.

У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.

Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.

Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое "балансиром". Простейший тип балансира - это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.

Упрощённая схема балансира для АКБ

Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A - все они ведут себя одинаково.

Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  • R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2...D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания - смотрите далее.

Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора - надо использовать изоляцию корпусов транзисторов друг от друга.

Испытания

Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.

Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения - зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.

Обсудить статью ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

Общим свойством всех литиевых аккумуляторов является нетерпимость к перезаряду и глубокой посадке напряжения. Есть около 10 разновидностей литий-ионных и полимерных аккумуляторов с использованием разных составов активных составляющих. Все они отличаются рабочим диапазоном по напряжению, но требовательны к соблюдению границ. Платы – это электрические схемы, внедренные в цепь для поддержания нужных параметров, отключения литиевых аккумулятора в случаях его неисправности. Для зарядки, балансировки, контроля разряда и защиты литиевых аккумуляторов составляются отдельные или совмещенные платы, которые выполняются на твердой подложке.

Зачем нужен балансир при зарядке батареи? При последовательном соединении нескольких банок напряжение суммируется, и емкость батареи будет равна самой низкой, из всех элементов.

Чтобы не допустить перезаряда «ленивой» банки, ее нужно отключить от питания, как только на ней будет достигнуто зарядное напряжение. Это позволит другим элементам продолжить зарядку. Для выполнения контроля за равномерным зарядом служит балансир. Он должен быть включен в цепь с последовательным соединением элементов. Для параллельного соединения балансир не нужен, там уровень заряда распределяется равномерно, как в сообщающихся сосудах.

Плата балансира может быть выполнена отдельно или входить в общий защитный контур MBS для литиевых аккумуляторов. Называется сборка балансировочным шлейфом.

Целью внедрения схемы является недопущение перезаряда отдельных элементов. Если используется один и защищенный аккумулятор, в нем предусмотрен блок от перезаряда.

Плата защиты литиевого аккумулятора

Литиевые аккумуляторы при перезарядке, нагревании могут загореться или взорваться. При проседании напряжения возникают трудности с зарядкой. Каждый случай нарушения режима ведет к безвозвратной потере емкости банки. Поэтому любая сборка из литиевых аккумуляторов содержит защитную плату.

Если используются незащищенные элементы, контроллер заряда-разряда устанавливается непременно. РСВ-плата предусмотрена, как обязательный элемент во всех аккумуляторов для бытовых приборов.

РСВ –платы и РСМ-модули не являются контроллерами, они не регулируют ток и напряжение. Их задача – разорвать цепь, если случилось короткое замыкание, перегрев. Модули допускают разряд до 2,5 В, что опасно. Все модули защиты китайские, продукция выпускается миллионами и вряд ли тестируется каждая микросхема. Это не полноценная защита, аварийная.

Для защиты используют платы заряда и защиты MBS, подбираемые по удвоенной токовой нагрузке, со встроенным балансиром. Платы зарядки и защиты литиевых аккумуляторов представляют контроллеры, которые обеспечивают 2 этапа процесса и обеспечивают нужные параметры. Непременным условием второго этапа зарядки является отключение питания при достижении максимального рабочего напряжения литиевого аккумулятора.

Схемы плат защиты литиевого аккумулятора

Все литий-ионные и литий-полимерные аккумуляторы и собранные батареи должны иметь защиту. Чтобы провести зарядку в 2 этапа, необходимо обеспечить последовательно режим постоянного тока, постоянного напряжения. Используются в сборке РСМ или MBS платы.

Собрать самостоятельно или купить готовые платы для подключения, выбирать вам. Для зарядки литиевых аккумуляторов специалисты используют китайские изделия. Их заказывают на AliExpress, с бесплатной доставкой.

LM 317

Простое зарядное устройство, стабилизатор тока.

Настройка заключается в создании напряжения 4,2 В подстройкой резисторов R4, R6. Сопротивление R8 является подстроечным сопротивлением. Погасший светодиод известит об окончании процесса. Недостатком этого устройства считают невозможность запитки от порта USB. Высокое напряжение питания 8-12 В, условие работы этого ЗУ.

ТР4056

Специалисты предлагают, для зарядки литиевого аккумулятора воспользоваться китайской платой ТП4056, с защитой от переплюсовки батарей или без. Купить ее можно на АлиЭкспресс, стоимость единицы обходится примерно в 30 центов.

Максимальный ток в 1 А регулируется заменой резистора R3. Напряжение 5 А, имеется индикатор зарядки.

Этапы контроля:

  • постоянно, напряжение на аккумуляторе;
  • предзарядка, если на клеммах меньше 2,9В;
  • максимальный постоянный ток 1 А, при замене резистора, увеличении сопротивления, ток падает;
  • при напряжении 4,2 В начинается плавное снижение зарядного тока при постоянном напряжении;
  • При токе 0,1С зарядка отключается.

Специалисты советуют покупать плату с защитой или выведенным контактом для температурного датчика.

NCP 1835

Зарядная плата обеспечивает высокую стабильность зарядного напряжения при миниатюрном размере платы – 3х3 мм. Этим устройством обеспечивается зарядка литиевых аккумуляторов всех видов и размеров.

Особенности:

  • малое количество элементов;
  • заряжает сильно разряженные аккумуляторы током около 30 мА;
  • детектирует незаряжаемые батарейки, подает сигнал;
  • можно задать время заряда от 6 до 748 минут.

Видео

Посмотрите на видео полный обзор платы заряда ТП4056

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама