THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Диагностирование деталей цилиндропоршневои группы и кривошипно-шатунного механизма двигателя


Ресурс двигателя, по существу, ограничивается износом основных деталей цилиндропоршневой группы и кривошипно-шатунного механизма. Предельные зазоры в сопряжениях этих механизмов служат основанием для постановки двигателя на ремонт. Исключительно важно сделать правильное заключение о техническом состоянии цилиндропоршневой группы, подшипников коленчатого вала и соединений шатуна с поршнем, так как это позволяет оценивать остаточный ресурс деталей и прогнозировать сроки возможной эксплуатации до ремонта.

Рис. 1. Проверка прецизионных пар топливного насоса на тракторе приспособлением КИ-4802:
1 - манометр; 2 - топливопровод; 3 - корпус приспособления; 4 - рукоятка; 5 -секундомер.

Однако определение зазоров в этих сопряжениях без разборки двигателя представляет собой известные трудности и требует специального оборудования. Поэтому диагностирование деталей ци-линдропоршневой группы и кривошипно-шатунного механизма проводят при появлении внешних признаков износа деталей: стуки, падение давления масла в главной магистрали, снижение мощности, повышение расхода топлива и картерного масла.

Проверка цилиндропоршневой группы. Техническое состояние деталей этой группы определяют по угару картерного масла; по количеству газов, прорывающихся в картер; по компрессии и утечкам воздуха, вводимого в цилиндр; а также при ослушивании.

Угар картерного масла по мере износа деталей цилиндропоршневой группы увеличивается незначительно и резко возрастает лишь при большом износе деталей, особенно поршневых колец. Такой характер изменения угара масла затрудняет определение остаточного ресурса деталей, но из-за простоты этим методом сравнительно часто пользуются при диагностировании.

Обычно увеличение расхода картерного масла определяют в процентах к расходу топлива. Данные о расходе топлива и картерного масла берут из учетных листов работы трактористов-машинистов за последние 10 рабочих смен. Полную замену масла в картере двигателя, если она проводилась в течение этих смен, не учитывают. Иногда для определения угара масла проводят контрольную рабочую смену, в конце которой замеряют расход топлива и масла.

Для большинства современных двигателей расход масла на угар более 3% от расхода топлива указывает на предельный износ деталей цилиндропоршневой группы.

Количество газов, прорывающихся в картер, при правильном их определении характеризует износ деталей цилиндропоршневой группы более точно, чем угар масла, поэтому этот метод нашел большее распространение. Определяют количество газов в картере работающего двигателя специальным прибором - индикатором расхода газов КИ-4887-II. Он позволяет отсасывать газы при давлении в картере, равном атмосферному, и дает возможность достаточно точно измерить количество газов, прорывающихся в картер. В принципе действия индикатора использована зависимость количества газов, проходящих через дроссельный расходомер, от площади проходного сечения при определенном постоянном перепаде давлений до и после дроссельного отверстия.

Перепад давления контролируется манометрами, выполненными в виде трех вертикальных каналов, заполненных водой. В нижней части каналы соединены между собой. В верхней части канал соединен с атмосферой, канал - с впускным патрубком прибора и канал - с выпускным патрубком. Давление в картере, равное атмосферному, устанавливают дросселем по равенству уровней воды в каналах. Подвижной втулкой устанавливают уровень воды в канале на 15 мм выше, чем в канале, и по шкале втулки определяют расход газов. Если он окажется более 120 л/мин, поворотом заслонки открывают дополнительное калиброванное отверстие, при помощи которого можно измерять расход газов до 175 л/мин.

Рис. 2. Схема работы индикатора-расходомера КИ-4887-II:
1 и 3 - каналы в корпусе; 4 и 5 - втулки дросселирующего устройства; 6 – дросселирующее отверстие; 7 заслонка; 8 – впускной патрубок; 9 – калиброванное отверстие; 10 - корпус; 11 - шкала; 12 - пружина; 13 - выпускной патрубок; 14 - дроссель.

Перед измерением количества газов, прорывающихся в картер, пускают и прогревают двигатель до нормального теплового режима и по тахометру устанавливают номинальную частоту вращения коленчатого вала. Отверстия под масломерную линейку и сапуна герметично закрывают пробками. В приборе вывертывают пробку канала, наливают в каналы воду (примерно половину) и на весь период измерения отверстие канала оставляют открытым. Полностью открывают дросселирующее отверстие и дроссель. Конусный наконечник прибора вставляют в отверстие маслозаливной горловины, а эжектор выпускного трубопровода закрепляют на выпускной трубе двигателя. Для отсоса газов из картера вместо выпускной трубы можно использовать впускную трубу воздухоочистителя. В этом случае отъединяют эжектор и наконечник трубопровода опускают в трубу воздухоочистителя, предварительно сняв фильтр грубой очистки воздуха.

Порядок измерения расхода газов индикатором КИ-13671 такой же, как и прибором КИ-4887-П. Вращая крышку индикатора, установленного на маслозаливную горловину, по шкале крышки отмечают количество газов в момент колебания поршня в зоне риски на корпусе сигнализатора.

Расход газов, измеренный прибором КИ-4887-П или КИ-13671, сравнивают с предельно допускаемым (по техническим условиям) количеством газов, прорывающихся в картер для двигателя определенной марки, и дают заключение о состоянии деталей цилиндро-поршневой группы. Для большинства современных тракторных двигателей расход газов в пределах 20…30 л/мин на один цилиндр (определяют делением измеренного общего расхода газов на число. Цилиндров в двигателе) свидетельствует о предельном износе поршневых колец, поршней и цилиндров или о поломке (закоксовыва-нии) поршневых колец, задирах и перекосе гильз цилиндров. В новых двигателях расход газов находится в пределах 6… 10 л/мин на один цилиндр.

Однако среднее значение количества газов, приходящееся на один цилиндр, не всегда правильно характеризует износ деталей цилиндропоршневой группы. В практике нередки случаи, когда из строя выходят отдельные цилиндры вследствие поломки или закок-совывания поршневых колец, задира рабочей поверхности гильзы и по другим причинам.

Чтобы выявить неисправность отдельного цилиндра, после суммарного измерения количества газов проверяют состояние каждого цилиндра. Для этого поочередно снимают форсунку или искровую свечу зажигания (при неработающем двигателе) и на минимально устойчивой частоте вращения коленчатого вала (одинаковой при всех замерах) определяют количество газов, прорывающихся в картер при работе с одним отключенным цилиндром. Если при каком-то неработающем цилиндре расход газов резко отличается (на 16…20 л/мин) от среднего расхода, полученного при очередном отключении остальных цилиндров, то это указывает на предельное (аварийное) состояние проверяемого цилиндра. В этом случае двигатель подлежит разборке.

Измерение компрессии и утечки воздуха в цилиндрах. Снижение компрессии (давления в конце такта сжатия) в цилиндрах и утечка воздуха, подаваемого в цилиндры, также характеризуют износ деталей цилиндропоршневой группы.

Компрессию измеряют компрессиометром КИ-861, представляющим собой специальный манометр с обратным клапаном, вентилями и трубопроводом. На прогретом двигателе снимают все форсунки или искровые свечи зажигания и полностью открывают дроссельную заслонку карбюратора. Резиновый наконечник компрессиомет-ра плотно вставляют вместо форсунки или свечи. Прокручивая коленчатый вал двигателя пусковым устройством, замеряют максимальное значение компрессии, которое автоматически фиксируется по манометру обратным клапаном.

Снижение компрессии в цилиндрах на 30…35% или разность показаний в отдельных цилиндрах более чем на 0,1 МПа указывает на предельный износ или неисправность (поломка, залегание колец и др.) деталей цилиндропоршневой группы.

Состояние цилиндропоршневой группы определяют также с помощью вакуум-анализатора КИ-5315, состоящего из вакуумметра, трубки с рукояткой, наконечника, узла клапанов. На прогретом двигателе снимают все форсунки и, прокручивая коленчатый вал пусковым устройством, поочередно вставляют наконечник вакуум-анализатора в отверстие форсунок и замеряют вакуумметрическое давление в каждом цилиндре.

Прибор действует следующим образом. На такте расширения при движении поршня вниз в надпоршневом пространстве создается разрежение, под действием которого открывается впускной клапан. Это разрежение передается вакуумметру и фиксируется его стрелкой. При движении поршня вверх на такте сжатия воздух выходит в атмосферу через выпускной клапан. В это время впускной клапан закрывается и поддерживает в приборе вакуум метрическое давление. При последующих перемещениях поршня разрежение в вакуумметре и в надпоршневом пространстве выравнивается и фиксируется стабильным положением стрелки прибора. Это давление и характеризует состояние уплотнений в проверяемом цилиндре. Снимают вакуумметрическое давление в полости прибора вентилем. Если разность между значением разрежения в отдельном цилиндре превышает среднее значение разрежения в остальных цилиндрах более чем на 0,02 МПа, необходимо заменить поршневые кольца и измерить другие детали цилиндропоршневой группы после разборки двигателя.

При измерении компрессии и разрежения в цилиндрах оценивают суммарную герметичность, которая зависит не только от технического состояния деталей цилиндропоршневой группы, но и от исправности прокладки головки блока, степени затяжки головки блока и от прилегания клапанов. Поэтому, чтобы избежать ошибок, перед измерением компрессии и разрежения в цилиндрах необходимо убедиться в герметичности прилегания клапанов и исправности прокладки головки цилиндра.

Измерение зазоров в соединениях кривошипно-шатунного механизма. При увеличении зазоров в результате износа в подшипниках коленчатого вала и в соединениях шатуна с поршнем до предельных размеров резко ухудшаются условия смазки не только в этих, но и в других соединениях двигателя. В главной магистрали двигателя падает давление масла, появляются стуки, и даже непродолжительная работа в таких условиях может привести к крупной поломке двигателя. Чтобы предотвратить аварийную ситуацию и своевременно поставить двигатель на ремонт, очень важно правильно определить эти зазоры.

Зазоры в подшипниках, коленчатого вала и 8 соединениях шатуна с поршнем измеряют при помощи компрессорно-вакуумной установки КИ-4942 и универсального пневматического устройства КИ-7892. Сущность метода заключается в следующем.

Пускают двигатель и прогревают его до нормального теплового режима. Затем двигатель останавливают и снимают форсунки или искровые свечи зажигания. На такте сжатия устанавливают в отверстие под форсунки или искровую свечу зажигания первого Цилиндра основание датчика перемещения (устройства КИ-7892) так, чтобы струна измерительного стержня индикатора часового гипа была расположена перпендикулярно днищу поршня. Проворачивая коленчатый вал, по максимальному отклонению стрелки индикатора устанавливают поршень в верхней мертвой точке (в. м. т.) и фиксируют коленчатый вал.

Рис. 3. Измерение разрежения в цилиндре вакууманализатором КИ-5315:

Компрессорно-вакуумную установку КИ-4942 включают на режим работы, обеспечивающий одновременное создание давления сжатия 0,05…0,10 МПа и разрежения воздуха 0,06…0,08 МПа. К основанию датчика перемещения подсоединяют шланг установки и поворотом крана управления подают сжатый воздух в надпорш-невое пространство, чтобы переместить поршень вниз до упора. В этом положении совмещают нулевое деление шкалы со стрелкой индикатора, затем поворотом крана управления создают в над-поршневом пространстве разрежение не менее 0,04 МПа. Под действием разрежения поршень должен переместиться в крайнее верхнее положение, что фиксируют по отклонению стрелки индикатора. Измерение повторяют 3…5 раз, чтобы убедиться в стабильности показаний прибора.

Максимальное показание индикатора соответствует суммарному зазору, состоящему из зазора в шатунном подшипнике, зазора между поршневым пальцем и втулкой верхней головки шатуна и зазора между отверстиями бобышек поршня и поршневым пальцем. Предельный суммарный зазор при таком измерении для двигателей, работающих до первого капитального ремонта, находится в пределах от 0,60 до 0,75 мм, а для ремонтировавшихся - от 0,45 до 0,60 мм.

Точно так же поочередно измеряют суммарный зазор в каждом цилиндре. Очередность измерения рекомендуется проводить в порядке работы цилиндров. В этом случае коленчатый вал после установки датчика перемещения поворачивают по ходу часовой стрелки на 180°.

При помощи того же датчика перемещения измеряют зазоры в отдельных соединениях. Для этого компрессорно-вакуумную установку переводят на режим работы вакуум-насоса, создавая разрежение 0,06…0,07 МПа. Основание датчика перемещения присоединяют к установке через дополнительный ресивер, чтобы исключить влияние пульсации при работе вакуум-насоса. Проворачивая коленчатый вал двигателя, устанавливают поршень с помощью индикатора датчика перемещения на 2…3 мм ниже в. м. т. на такте сжатия. Затем подводят поршень на 1…2 мм до в. м. т. (по индикатору) и устанавливают стрелку индикатора на нуль. Поворотом крана управления создают в надпоршневом пространстве разрежение со скоростью 0,01…0,03 МПа/с и наблюдают, за ступенчатым перемещением стрелки индикатора. Первая ступень перемещения соответствует зазору в шатунном подшипнике, вторая - зазору между поршневым пальцем и втулкой верхней головки шатуна. Дальнейшее незначительное перемещение (0,02…0,03 мм) поршня характеризует выдавливание масляных пленок из соединений.

При создании разрежения в надпоршневом пространстве более 0,05 МПа возможно появление третьей ступени перемещения, характеризующей перемещение коленчатого вала в коренных подшипниках. Однако измерить зазор в коренных подшипниках с достаточной трчностью этим приспособлением нельзя.

Если зазоры измеряют после промывки смазочной системы маловязкой моющей жидкостью (дизельным топливом и др.), то первая ступень перемещения соответствует зазору между поршневым пальцем и втулкой верхней головки шатуна, а вторая - зазору в шатунном подшипнике. Действующий зазор определяют, прибавляя к соответствующему перемещению 0,05 мм. Например, если первая ступень перемещения Si соответствует зазору в шатунном подшипнике, то действительный зазор 5ш = 0,05 + 5| мм. Точно так же определяют зазоры в других цилиндрах. Предельный зазор в шатунных подшипниках большинства двигателей 0,45…0,50 мм, зазор между поршневым пальцем и втулкой верхней головки шатуна 0,35…0,40 мм.

Стуки в соединениях деталей кривошип но-шатунного механизма определяют ослушиванием при неработающем двигателе. Для этого снимают с двигателя датчик перемещения, переводят компрессорно-вакуумную установку на режим работы, обеспечивающий одновременное создание давления сжатия 0,20…0,25 МПа и разрежения 0,06…0,07 МПа. К отверстию под форсунку или свечу герметично присоединяют наконечник шланга от установки. При положении поршня в в.м.т. на такте сжатия попеременно создают в надпоршневом пространстве разрежение и сжатие. Прикладывая наконечник стетоскопа к блоку цилиндров в зоне поршневого пальца, прослушивают стуки в верхней головке шатуна и в бобышках. Стуки в шатунном подшипнике прослушивают, приложив наконечник стетоскопа к торцу коленчатого вала. Такую операцию проделывают для всех цилиндров.

Устройство КИ-13933М, близкое по конструкции устройству КИ-7892, позволяет определять зазоры в шатунных и коренных подшипниках коленчатого вала без компрессорно-вакуумной установки. Его также устанавливают вместо форсунки и при измерении зазоров в шатунных подшипниках соединяют при помощи специальной заслонки и гибкого шланга с горловиной воздухоочистителя или с открытым отверстием впускного коллектора. Прокручивая коленчатый вал пусковым устройством, плавно опускают струну до соприкосновения ее с поршнем (начало вибрации стрелки индикатора), фиксируют это положение, устанавливают индикатор на «0» и отводят струну вверх на 0,8…0,9 мм. Затем, продолжая прокручивать коленчатый вал, опускают струну до момента соприкосновения ее с поршнем и фиксируют показание индикатора.

Падение давления масла в главной магистрали до предельных значений и предельные зазоры или стуки в сопряжениях деталей кривошипно-шатунного механизма указывают на необходимость разборки и ремонта двигателя.

К атегория: - Ремонт тракторов и автомобилей

Проверяют кривошипно-шатунный механизм пускового двигателя по стукам, величине суммарного зазора в элементах КШМ и величине

создаваемого разрежения.

Стуки проверяют при неработающем двигателе, для чего устанавливают поршень в в.м.т. на такте сжатия и фиксируют его в данном положении. Специальным переходником, ввертываемым в отверстие свечи или заливного краника, подключают к надпоршневому пространству наконечник компрессорно-вакуумной установки КИ-13907. При закрытом кране установки включают компрессор и создают в ресивере давление 0,2...0,25 МПа и разрежение 0,06...0,07 МПа. Регулируют давление до 0,2 МПа, прикладывают наконечник стетоскопа к блоку цилиндров в зоне поршневого пальца, открывают кран, и попеременно создавая в надпоршневом пространстве разрежение и сжатие, прослушивают стуки в верхней головке шатуна. Продолжая поддерживать в ресиверах заданное давление и разрежение, и, прикладывая наконечник стетоскопа к картеру и цилиндру, прослушивают стуки в подшипниках. Значительные стуки указывают на необходимость проверки зазоров в данных сопряжениях.

При проверке зазоров вывертывают из головки свечу. зажигания и устанавливают вместо нее приспособление КИ-11140 с индикатором часового типа (рис. 5.5.), при этом ножка индикатора должна утопать на 1,5..2 мм.

Открыв распределительный кран, создают в камере разрежение. Нулевое значение шкалы индикатора совмещают с большой стрелкой. После этого создают в камере давление. Переводят кран в нейтральную позицию и подсчитывают разницу в показаниях индикатора. Полученный результат покажет величину суммарного зазора в сопряжениях кривошитю-шатунного механизма. Если данный зазор превышает допустимое значение - 1 мм, то двигатель подлежит разборке для непосредственного измерения зазоров в каждом подшипниковом узле.

Для измерения величины разрежения отсоединяют наконечник компрессорно-вакуумной установки. Ввертывают, если был вывернут, заливной краник. В свечное отверстие вставляют вакуум-анализатор КИ-5315 (рис. 6.5.). Прокручивая коленчатый вал стартером, измеряют величину разрежения. Если оно меньше 0,03 МПа, то пусковой двигатель подлежит разборке для проведения экспертизы деталей цилиндро-поршневой группы и определения объема ремонтных работ.

ТО и диагностирование составных частей кривошипно-шатунный механизм дизеля трактора


Параметры технического состояния

Кривошипно-шатунный механизм включает: цилиндро-иоршневую группу (гильзы цилиндров, поршни и поршневые кольца), коленчатый вал с шатунными и коренными подшипниками, шатуны со втулками, порш-невые пальцы и маховик.

Основным параметром состояния цилиндро-поршне-вой группы считается расход картерного масла на угар. Однако отсутствие достаточно точного экспресс-метода определения этого параметра не всегда позволяет объективно судить о состоянии данного механизма. Чтобы с достаточной точностью определить угар масла, требуется несколько контрольных смен с точными измерениями количества доливаемого масла и топлива, что чрезвычайно трудоемко. При этом невозможно учесть утечки масла через неплотности сальников коленчатого вала и разъемов картера. Кроме того, угар масла в течение длительного времени работы дизеля изменяется незначительно и лишь при большом износе деталей цилиндро-поршневой группы, в частности поршневых колец, начинает резко возрастать.

Такой характер изменения угара масла в зависимости от наработки затрудняет прогнозирование по нему остаточного ресурса.

Об интенсивности изнашивания сочленений дизеля можно судить по концентрации продуктов износа в картерном масле, определяемой с помощью спектрографической установки. В этом случае для оценки степени изношенности основных деталей наряду с регулярным спектральным анализом проб масла, отбираемых через определенные промежутки работы дизеля, необходимо знать их химический состав и соотношение скоростей изнашивания сочленений. О целесообразности разборки дизеля для ремонта или устранения неисправности судят по резкому возрастанию концентрации основных элементов в работавшем масле.

Значительное возрастание концентрации алюминия свидетельствует о предельном износе поршней и необходимости их замены.

Наибольшее распространение для оценки состояния цилиидро-поршневой группы получил способ определения количества газов, прорывающихся в картер. При измерении количества газов с помощью ротаметра из-за высокого сопротивления выходу газов из картера и наличия в картере избыточного давления часть газов уходит в атмосферу через сальники коленчатого вала и другие неплотности, минуя прибор.

Чтобы избежать этого, во время измерений необходимо отсасывать газы из картера, обеспечивая прохождение их только через измерительное устройство.

Угар картерного масла и количество газов, прорывающихся в картер при работе дизеля на всех цилиндрах, являются интегральными (суммарными) оценочными показателями технического состояния цилиндро-поршневой группы.

Чтобы оценить состояние каждого цилиндра в отдельности, их поочередно выключают (декомпрессируют). Затем подсчитывают разницу между расходом газов, полученным при декомпрессировании проверяемого цилиндра, и средним расходом газов, полученным при декомпрессировании каждого из остальных цилиндров. При одинаковом состоянии всех цилиндров указанная разница будет незначительной. Если же она окажется большой, то это свидетельствует об аварийном состоянии данного цилиндра.

Сравнительную оценку технического состояния цилиндров можно дать по компрессии в них (давлению конца сжатия). Однако при этом необходимо учитывать неплотно и клапанов газораспределения. Разница в значениях компрессии у нового и изношенного дизелей возрастает с понижением частоты вращения коленчатого вала. Поэтому компрессию рекомендуется определять при пусковой частоте вращения коленчатого вала. Чтобы дать правильную сравнительную оценку состояния цилиндров по компрессии, должно быть соблюдено равенство и постоянство частоты вращения коленчатого вала и температуры стенок цилиндров при проверке каладого из них в отдельности. В связи с тем, что частота вращения коленчатого вала зависит от технического состояния пускового устройства, а температура стенок цилиндров - от условий проверки дизелей (предварительного разогрева его, температуры окружающей среды и пр.), соблюдение отмеченных условий не всегда представляется возможным. Следовательно, компрессия является ориентировочным показателем технического состояния цилиндро-поршневой группы. Одним из признаков слабой компрессии является трудный пуск дизеля (особенно в холодную погоду), обусловленный чрезмерно низкой температурой сжатого воздуха, не обеспечивающей самовоспламенения дизельного топлива.

В ГОСНИТИ разработан более совершенный способ оценки состояния отдельных цилиндров по величине разрежения, создаваемого на такте расширения при прокрутке коленчатого вала дизеля с помощью пускового устройства. В отличие от способа, основанного на определении компрессии, этот способ обладает меньшей трудоемкостью и более высокой точностью результатов диагностирования. Для указанных целей вместо компрессиметра в настоящее время применяют вакуум-анализатор, позволяющий диагностировать отдельные цилиндры, не закрепляя прибор в головке цилиндров.

О состоянии подшипников коленчатого вала мол<но судить по зазорам в них. Эллипсность и конусность шеек вала до разборки дизеля на ремонт можно не проверять, так как эти параметры являются следствием износа подшипников.

Для оценки технического состояния подшипников коленчатого вала пользуются способом, основанным на определении следующих диагностических параметров:
— давления масла в главной масляной магистрали;
— количества масла, протекающего через подшипники в единицу времени;
— шумов и стуков, возникающих от ударов в сопряжениях при работе дизеля;
— стуков, возникающих от соударения деталей в результате искусственного перемещения поршня и шатуна на величину зазоров в сопряжениях.

Широко распространено прослушивание дизеля во время его работы. С увеличением зазоров в подшипниках появляются характерные стуки, прослушиваемые в определенных зонах и при соответствующих режимах работы дизеля. Однако эти стуки отчетливо прослушиваются при значениях зазоров, превосходящих допускаемые. При этом количественная оценка зазоров зависит от слуховых качеств и опыта оператора. Хорошие результаты дает прослушивание стуков в неработающем дизеле при попеременном создании в надпоршневом пространстве разрежения и давления.

Определение количества газов, прорывающихся в картер

Количество газов, прорывающихся в картер, определяют индикатором расхода газов КИ-4887-П-ГОСНИТИ, Данный прибор снабжен устройством, позволяющим отсасывать газы из картера через измерительное устройство и измерять их расход при давлении в картере, равном атмосферному. Благодаря этому полностью устраняются утечки газов через неплотности картера и, следовательно, значительно повышается точность измерений.

Схема работы прибора КИ-4887-II представлена на рисунке. Состоит: из дроссельного расходомера постоянного перепада давления с жидкостным дифференциальным манометром для контроля давления в дросселирующем устройстве, дросселя и жидкостного манометра для регулирования и контроля давления на входе в расходомер, впускного и выпускного патрубков, трубопроводов с наконечниками и эжектора для отсоса газов, поступающих во впускной патрубок.

Дросселирующее устройство образовано двумя втулками. Плотное соединение этих втулок обеспечивается предварительной совместной притиркой их по конусным поверхностям и поджатием друг к другу распорной пружиной. Втулка жестко закреплена На корпусе, а втулка может поворачиваться относительно втулки. На половине окружности конусной части обеих втулок имеются поперечные щели, позволяющие плавно изменять площадь дросселирующего отверстия при повороте втулки.

Как известно, в дроссельных расходомерах расход газа пропорционален перепаду давления в дросселирующем устройстве и площади дросселирующего отверстия. При заданном перепаде давления в дросселирующем устройстве количество газов, проходящих через дросселирующее отверстие, будет зависеть только от площади этого отверстия, являющейся в данном случае мерой расхода. Шкала прибора тарируется при перепаде давления в дросселирующем, устройстве, равном 15 мм вод. ст. А это означает, что указанный перепад давления следует устанавливать при всех измерениях. Достигается это путем изменения площади дросселирующего отверстия. Перепад давления контролируют дифференциальным манометром, водяные столбики которого находятся в сверлениях прозрачного корпуса Сверления в нижней части сообщаются между собой, а в верхней - с впускным и выпускным патрубками дросселирующего устройства.

Впускной трубопровод, соединенный с патрубком, снабжен конусным наконечником, вставляемым в отверстие маслозаливной горловины проверямого дизеля.

Газы из картера можно отсасывать двумя способами, используя для этой цели разрежение во впускном воздушном тракте или энергию отработавших газов. В первом случае снимают с впускной трубы воздухоочистителя фильтр грубой очистки воздуха и опускают в трубу наконечник выпускного трубопровода прибора: При работе дизеля разрежение, создаваемое во впускном воздушном тракте, через выпускной трубопровод и выпускной патрубок 13 передается в дросселирующее отверстие. Во втором случае на выхлопной трубе устанавливают эжектор. При этом газы, проходя с большой скоростью в кольцевом пространстве между внутренней стенкой выхлопной трубы и эжектором, создают в нем разрежение, которое, как и в первом случае, передается в дросселирующее отверстие.

Отсос газов регулируют дросселем, поддерживая в картере атмосферное давление, которое контролируют с помощью жидкостного манометра, образованного жидкостными столбиками в сверлениях. При этом канал должен сообщаться с атмосферой, для чего необходимо вывинтить из него пробку.

Расход газов определяют по шкале, нанесенной л а наружной поверхности подвижной втулки. Размеры дросселирующего отверстия 6 рассчитаны на измерение расхода газов до превышающего 100 л/мин. Для увеличения диапазона измерений в дне неподвижной вгулки 4 имеются два дополнительных калиброванных отверстия, прикрываемых заслонкой. Если расход газов больше 100 л/мин, открывают отверстия 9, повернув отверткой заслонку. В этом случае к значению расхода, полученному по основной шкале, прибавляют постоянные значения расхода газов через эти отверстия, нанесенные на наружной поверхности подвижной втулки. Подключение дополнительных калиброванных отверстий дает возможность измерять расход газов до 1л/мин.

Чтобы измерить количество газов, прорывающихся в картер, пускают и прогревают дизель до температуры охлаждающей воды и картерного масла 65…90 °С.

Открывают маслозаливную горловину, закрывают отверстие сапуна и отверстие под масломерную линейку пробками.

Заливают в каналы дифманометра воду примерно на половину, вывинтив пробку из канала, которую не ставят на место до конца измерений. Полностью открывают дросселирующее отверстие поворотом втулки за маховичок против часовой стрелки и дроссель поворотом наружной втулки.

Подключают прибор к дизелю. Для этого опускают наконечник (рис. 1) выпускною трубопровода во впускную трубу воздухоочистителя, предварительно сняв фильтр грубой очистки воздуха, или же закрепляют на выхлопной трубе эжектор, присоединенный к наконечнику, и вставляют конусный резиновый наконечник впускного трубопровода в отверстие маслозаливной герловины.

Рис. 1. Определение количества газов, прорывающихся в картер, на тракторе МТЗ-80 прибором КИ-4887-П-ГОСНИТИ: 1 - наконечник; 2 - выпускной трубопровод; 3 - впускная труба воздухоочистителя; 4 - маслозаливная горловина; 5 - резиновый наконечник; 6 - впускной трубопровод

При работе дизеля на холостом ходу с помощью рычага управления скоростным режимом устанавливают номинальную частоту вращения коленчатого вала (табл.

Удерживая прибор в вертикальном положении, поворотом наружной втулки дросселя устанавливают одинаковый уровень воды в левом и правом каналах манометра. Затем, медленно поворачивая втулку за маховичок по часовой стрелке, добиваются такого положения, при котором уровень воды в канале был бы на 15 мм выше уровня в канале. Если после этого уровни воды в каналах окажутся разными, то поворотом наружной втулки дросселя 14 их необходимо выровнять. Затем по шкале прибора определяют расход газов.

Повышенный расход картерных газов может быть либо по причине чрезмерного износа деталей цилиндро-поршневой группы, либо вследствие закоксовывания или поломки поршневых колец в отдельных цилиндрах.

Чтобы выявить причину и определить вид и объем ремонта при количестве газов, превышающем допускаемое значение, следует проверить состояние каждого цилиндра в отдельности.

Для этого поочередно снимают каждую форсунку (при неработающем дизеле) с целыо декомпрессирования цилиндров и измеряют расход газов при одном декомпрессированном цилиндре и минимальной устойчивой частоте вращения коленчатого вала, устанавливая ее одинаковой при проверке каждого цилиндра.

При положительном значении AQ, возможны поломка или закоксовывание компрессионных колец, задиры на рабочей поверхности или чрезмерный износ гильзы и другие неисправности.

Ввиду сравнительно небольшой трудоемкости способа диагностирования отдельных цилиндров по разрежению в надпоршневом пространстве при прокрутке дизеля с помощью пускового устройства по сравнению с описанным способом при наличии соответствующего устройства (вакууманализатора) состояние отдельных цилиндров проверяют с помощью этого устройства.

Определение состояния отдельных цилиндров по величине разрежения

Состояние каждого цилиндра оценивают с помощью вакуум-анализатора КИ-5315-ГОСНИТИ по величине вакуумметрического давления (разрежения) в надпор-шневом пространстве.

Состоит: из вакуумметра, корпуса, впускного и выпускного клапанов и наконечника.

Для диагностирования цилиндро-поршневой группы вакуум-анализатор соединяют с надпоршневым пространством, плотно вставляя наконечник в отверстие для форсунки, и прокручивают коленчатый вал с помощью стартера или пускового двигателя. В момент движения поршня вниз на такте расширения в надпоршневом пространстве создается вакуумметрическое давление, под действием которого открывается впускной клапан. Благодаря этому вакуумметрическое давление из над-поршневого пространства передается вакуумметру, вызывая отклонение стрелки прибора на соответствующую величину.

При движении поршня вверх на такте сжатия воздух из надпоршневого пространства выталкивается в атмосферу через выпускной клапан. При этом впускной клапан закрыт.

Во время очередного хода поршня проверяемого цилиндра вниз выпускной клапан закроется, а впускной - откроется. Это повлечет за собой дальнейшее возрастание вакуумметрического давления. В тот момент, когда давление в системе цилиндр-вакуум-анализатор достигнет постоянной величины, т. е. станет равным максимальному вакуумметр аческому давлению в надпоршневом пространстве, показание вакуумметра стабилизируется.

Величина вакуумметрического давления, зафиксированная при стабильном положении стрелки вакуммет-ра, будет характеризовать состояние уплотнений в проверяемом цилиндре.

Усилие затяжки впускного клапана регулируют на заводе-изготовителе регулировочным винтом. Это усилие должно быть таким, чтобы обеспечивалось полное открытие клапана при диагностировании дизелей с предельным (выбраковочным) состоянием цилиндро-поршневой группы.

Для снятия вакуумметрического давления в полости вакуумметра предусмотрен специальный вентиль.

Состояние уплотнений в цилиндрах проверяют следующим образом.

Останавливают дизель и снимают с него форсунки. Прокручивая дизель и устанавливая поочередно в отверстие форсунок наконечник вакуум-анализатора, измеряют ва-куумметрическое давление в каждом цилиндре (рис. 2).

Разница меладу значением разрежения в отдельном цилиндре и средним значением разрелсе-ния в остальных цилиндрах должна быть не более 0,2 кгс/см2.

Рис. 2. Измерение вакуум-метрического давления в цилиндре дизеля вакуум-анализатором КИ-5315-ГОСНИТИ: 1 - наконечник; 2 - узел клапанов; 3 - трубка; 4 - вентиль; 5 - вакуумметр; б - рукоятка

Техническая экспертиза деталей цилиндро-поршневой группы

Если перечисленные выше диагностические параметры достигли предельных значений или превышают допускаемые в эксплуатации величины, то дизель разбирают для технической экспертизы путем осмотра и микрометража сопряжений цилиндро-поршневой группы и замены непригодных деталей.

Если после поступления с завода-изготовителя или из ремонта дизель вскрывают впервые, то в этом случае нередко заменяют лишь поршневые кольца. В даль-нейшем, при достижении предельных или превышении допускаемых в эксплуатации значений параметров состояния цилиндро-поршневой группы, ее заменяют полностью. В случае предельной разницы между количеством газов, прорывающихся в картер при декомпрессировании какого-либо цилиндра, и средним количеством газов, прорывающихся в картер при поочередном декомпрессировании остальных цилиндров, а также в случае предельной разницы между разрежением в каком-либо цилиндре и средним разрежением в остальных цилиндрах заменяют в указанном цилиндре непригодные детали (чаще всего поломанные или пригоревшие поршневые кольца).

После разборки дизеля состояние каждой детали и сопряжения цилиндро-поршневой группы оценивают по результатам их осмотра и микрометража. При этом измеряют износ гильзы цилиндров в верхнем и среднем рабочем поясе, зазоры между гильзами и юбками поршней, зазоры в стыках поршневых колец, высоту колец и канавок поршней, зазоры между бобышками поршней и поршневыми кольцами, а также между пальцами и втулками верхних головок шатунов. Для указанных целей применяют индикаторный нутромер, микрометр, мерительные плитки, индикатор часового типа, щупы. Результаты микрометража заносят в таблицу.

Если причиной разборки дизеля был чрезмерный прорыв газов в картер или чрезмерный угар картерного масла, а зазоры между юбками поршней и гильзами оказались в пределах допускаемых значений, то заменяют только поршневые кольца. Так как гильзы цилиндров больше всего изнашиваются в плоскости, перпендикулярной продольной оси дизеля, то в случае оставления на дизеле их рекомендуется поворачивать на 90° вокруг оси, с тем чтобы при дальнейшей эксплуатации наиболее изношенные поверхности изнашивались менее интенсивно. Если причиной разборки дизеля была неисправность в каком-либо цилиндре (например, поломка поршневых колец), то и в этом случае рекомендуется осмотреть всю цилиндро-поршневую группу и, если необходимо, заменить изношенные и неисправные детали.

Предварительная оценка состояния сопряжений по давлению масла в магистрали и стукам

Давление масла проверяют с помощью устройства КИ-5472-ГОСНИТИ, предназначенного для измерения давления в главной магистрали смазочной системы дизелей и в сливной магистрали гидравлической системы навесного устройства.

Состоит: из манометра, соединительного рукава с ниппелем и накидной гайкой, демпфера, служащего для сглаживания пульсаций масла при измерении давления, и сменных штуцеров (переходников). В нерабочем положении свободный конец рукава (ниппель) закрывают заглушкой.

Чтобы измерить давление в главной магистрали дизеля,. устройство подключают к корпусу масляного фильтра, предварительно отсоединив трубку (рис. 3) мембранного или же датчик логометрического манометра.

Пускают и прогревают дизель до нормального теплового состояния, после чего проверяют давление масла в магистрали сначала при номинальной, а затем при минимальной устойчивой частоте вращения коленчатого вала на холостом ходу.

Рис. 3. Измерение давления в главной масляной магистрали дизеля устройством КИ-5472-ГОСНИТИ: 1 - соединительный рукав; 2 --манометр; 3 - заглушка; 4- трубка штатного манометра; 5 - сменный штуцер; 6 - накидная гайка

Для попеременного создания в надпоршневом пространстве проверяемого цилиндра давления и вакуума служит распределительный кран с тремя трубопроводами и наконечник, присоединяемый к головке цилиндров вместо форсунки.

Электронный автостетоскоп ‘ГУ ПБеО-ООЗ представляет собой усилитель с пьезокристаллнческим датчиком и элементами питания, вмонтированными в пластмассовый корпус, имеющий гнезда для подключения стержня и телефона.

Усилитель питается от двух элементов ФБС-0,25 напряжением 3В. Телефон типа ТМ-4, потребляемый ток - 5 МА.

Для прослушивания объекта диагностирования автостетоскоп вынимают из футляра, ввертывают наконечник и вставляют штекер телефона в соответствующие гнезда, прикладывают наконечник к месту проверяемой составной части и закрепляют телефон на ухе. По окончании прослушивания телефон необходимо отключить, в противном случае элементы питания будут разряжаться.

С помощью автостетоскопа и описанного устройства прослушивают стуки в сопряжениях бобышки поршня - поршневой палец, поршневой палец - втулка верхней головки шатуна, шейка коленчатого вала - шатунный подшипник в следующем порядке.

Подключают к проверяемому цилиндру компрессор-но-вакуумную установку, как показано на рисунке 8. Для этого снимают с двигателя форсунки, устанавливают поршень проверяемого цилиндра в ВМТ и включают какую-либо передачу (для фиксации коленчатого вала от прокручивания). При закрытом кране устанавливают наконечник компрессорно-вакуумной установки в отверстие для форсунки проверяемого цилиндра и закрепляют его.

Включают компрессор и создают в ресиверах соответственно давление 2…2,5 кгс/см2 и разрежение 0,6…0,7 кгс/см2.

Регулятором давления устанавливают рабочее давление 2 кгс/см2.

Прикладывают наконечник автостетоскопа к блоку цилиндров в зоне поршневого пальца, открывают кранЗ установки и, попеременно создавая в надпоршневом пространстве разрежение и сжатие путем переключения кранов, прослушивают стуки в верхней головке шатуна и бобышках поршня.

Продолжая поддерживать в ресиверах заданное давление и разрежение и приложив наконечник стетоскопа к торцу коленчатого зала, прослушивают стуки в шатунном подшипнике.

Аналогично прослушивают стуки в указанных зонах остальных цилиндров при положении поршня в ВМТ на такте сжатия.

Если регулировка сливного клапана не дает положительных результатов, необходимо проверить производительность насоса и состояние редукционного клапана смазочной системы в мастерской на стенде.

К сожалению, на большинстве тракторов последних выпусков с двигателями водяного охлаждения масляные термометры отсутствуют. Это затрудняет контроль теплового состояния дизелей и нередко приводит к их переохлаждению, так как температура охлаждающей воды не всегда может служить критерием оценки теплового режима.

ПРИМЕР. При прогреве дизеля охлаждающая вода прогревается намного быстрее, чем картерное масло, особенно, если прикрыта шторка или жалюзи. Не зная температуры масла тракторист может преждевременно дать полную нагрузку, что повлечет за собой ухудшение условий работы кривошипно-иштунного механизма Кроме того, температура картерного масла является одним из основных факторов, влияющих на мощность и топливную экономичность дизеля. При определении этих показателей температура картерного масла должна быть не ниже 70 градусов С, так как при богее нижних значениях температуры масла резко возрастают механические потери, а следовательно, увеличивается погрешность измерений

Рис. 4. Измерение суммарного зазора в верхней головке шатуна и шатунном подшипнике устройством КИ-11140-ГОСНИТИ

Суммарный зазор измеряют с помощью устройства КИ-11НО-ГОСНИТИ. Состоит: из корпуса с закрепленным на нем индикатором часового типа, пневматического приемника, сменного фланца для крепления устройства в головке цилиндров вместо форсунки, уплотнения, направляющей штока, жестко соединенного с ножкой индикатора, и стопорного винта, служащего для фиксации направляющей в пневматическом прием» нике.

Чтобы измерить зазоры, снимают с дизеля форсунки. Устанавливают поршень проверяемого цилиндра в ВМТ на такте сжатия и стопорят коленчатый вал. Закрепляют устройство в форсуночном отверстии, предварительно ослабив стопорный винт и приподняв направляющую с индикатором и штоком вверх. Затем опускают направляющую до упора штока в днище поршня (с натягом) и фиксируют направляющую стопорным винтом (рис. 4).

К атегория: - ТО трактора

При ЕО двигатель очищают от грязи, проверяют его состояние визуально и прослушивают работу в разных режимах.

При ТО-1 проверить крепление опор двигателя. Проверить герметичность соединения головки цилиндров, поддона картера, сальника коленчатого вала. При не плотном соединении головки с блоком, будут видны подтеки масла на стенках блока цилиндров. При неплотном соединении поддона картера и сальника коленчатого вала так же судят по подтекам масла.

При ТО-2 необходимо подтянуть гайки крепления головок цилиндров. Подтяжку головки из алюминиевого сплава производят на холодном двигателе динамометрическим ключом либо обычным без применения насадок. Усилие должно быть в пределах 7,5 - 7,8 кгс/м. Подтяжка должна производиться от центра, постепенно перемещаясь к краям и при этом должна идти крест на крест, без рывков (равномерно). Подтянуть крепление поддона картера.

СО 2 раза в год проверить состояние цилиндропоршневой группы.

Диагностирование неисправностей кривошипно - шатунного механизма

Неисправность

Двигатель не пускается

Слабая компрессия в цилиндрах ввиду износа поршневой группы

Двигатель работает с перебоями и не развивает номинальной мощности

Попадание в цилиндры воды из системы охлаждения

Изношены поршневые кольца

Засорена выпускная труба

Дымный выпуск отработавших газов

Закоксовывание поршневых колец

Износ поршневой группы

Двигатель не прогрет

Попадание воды в цилиндры

Стуки в двигателе

Изношены поршневые пальцы, отверстия в бобышках поршня и верхней головки шатуна

Изношены поршни и гильзы

Изношены вкладыши и шейки коленчатого вала

Состояние сопряжения поршень -- поршневые кольца -- гиль цилиндра можно оценить по количеству газов, прорывающихся картер. Этот диагностический параметр измеряют при помощи расходомера КИ-4887-1 (рис. 8), предварительно прогрев двигатель до нормального теплового режима.

Прибор имеет трубу с входных и выходным 6 дроссельными кранами. Входной патрубок 4 присоединяют к маслозаливной горловине двигателя, эжектор 7 для отсоса газов устанавливают внутри выхлопной трубы или присоединяют вакуумной установке. В результате разрежения в эжекторе картерные газы поступают в расходомер. Устанавливая при помощи кранов 5 и 6 жидкость в столбиках манометров 2 и 3 на одном уровне, добиваются, чтобы давление в полости картера было равно атмосферному. Перепад давления м/г устанавливают по манометру 1 одинаковым для всех замеров при помощи крана 5. По шкале прибора определяют количество газов, прорывающихся в картер, и сравнивают его с номинальным (л/мин):

Рис.8. Схема расходомера КИ-4887-1: 1--3 - манометры, 4 - входной патрубок, 5, 6 - краны, 7 - эжектор.

Внешние проявления неисправностей деталей цилиндропоршневой группы - (поршни, гильзы и поршневые кольца) следующие:

  • - увеличение расхода масла на долив;
  • - ухудшение пусковых качеств двигателя;
  • - снижение мощностных и экономических показателей;
  • - увеличение расхода картерных газов;
  • - существенное ухудшение состояния картерного масла.

Диагностирование состояния деталей ЦПГ по указанным проявлениям достаточно затруднено, т.к. на них могут влиять неисправности других узлов и систем двигателя. Например, на пусковые качества двигателя наряду с износом и дефектами деталей ЦПГ могут влиять неисправности системы электрооборудования (аккумуляторных батарей, стартера, генератора) и раз регулировки топливной аппаратуры (увеличение угла опережения впрыска топлива, уменьшение пусковой подачи, снижение производительности подкачивающего насоса и др.). Поэтому при диагностировании деталей ЦПГ необходимо убедиться в исправности других узлов и систем двигателя, оказывающих влияние на работоспособность рассматриваемых деталей. Так, в случаях повышенного расхода масла на долив (выше 1,5 %) необходимо убедиться в отсутствии течи масла из двигателя и разгерметизации впускного тракта.


Рис.9 Прибор модели К-69М для определения технического состояния цилиндропоршневой группы двигателя: 1 -- шланг от магистрали сжатого воздуха, 2, 11 -- быстросъемные муфты, 3 и 8 -- штуцера, 4 -- редуктор, 5 -- калиброванное отверстие, б -- манометр, 7 -- регулировочный винт, 9 -- накидная гайка, 10 -- шланг для присоединения прибора к двигателю, 12 -- штуцер ввертываемый в отверстие для форсунки.

Работа прибора основана на измерении утечки воздуха, подаваемого под давлением в цилиндр неработающего двигателя через отверстие для форсунки.

Прибор состоит из редуктора, манометра со шкалой, проградуированной в процентах утечки воздуха, регулировочного винта, входного и выходного штуцеров, шланга для соединения прибора с цилиндром двигателя, быстросъемных муфт для присоединения шланга магистрали сжатого воздуха к прибору и штуцеру, ввертываемому в резьбовое отверстие для форсунки. К прибору прилагаются звуковой сигнализатор для определения конца такта сжатия в цилиндре двигателя перед началом проверки. Для определения начала и конца такта сжатия в дизелях используют щуп-индикатор. Если значение утечки воздуха при положении поршня в в. м. т. больше предельного, следует проверить стетоскопом утечку воздуха через клапаны и убедиться в отсутствии утечки воздуха через прокладку головки цилиндров двигателя. Если при смачивании прокладки головки цилиндров мыльной водой на ней или в наливной горловине радиатора появляются пузырьки воздуха, это свидетельствует о слабой затяжке гаек головки цилиндров или о начале разрушения прокладки. Возможно наличие трещины в блоке цилиндров или камере сгорания.

Стуки двигателя прослушивают при помощи стетоскопа, прикасаясь концом стержня или к зонам прослушивания на двигателе.

Состояние коренных подшипников коленчатого вала определяют, прослушивая нижнюю часть блока цилиндров при резком увеличении и сбросе оборотов двигателя. Изношенные коренные подшипники издают сильный глухой стук низкого тона, усиливающийся при резком увеличении частоты вращения коленчатого вала.

Состояние шатунных подшипников коленчатого вала определяют аналогично. Изношенные шатунные подшипники издают стук среднего тона, по характеру схожий со стуком коренных подшипников, но менее сильный и более звонкий, исчезающий при выключении форсунки прослушиваемого цилиндра.

Работу сопряжения поршень -- гильза цилиндра прослушиваютпоршневого пальца, особенно, если у двигателя наблюдается повышенный расход топлива и масла. Скрипы и шорохи в сопряжении поршень -- гильза цилиндра свидетельствуют о начинающемся заедании в этом сопряжении, вызванном малым зазором или недостаточным смазыванием.

Состояние сопряжения поршневой палец -- втулка верхней головки шатуна проверяют, прослушивая верхнюю часть блока цилиндров при малой частоте вращения коленчатого вала с резким переходом на среднюю. Резкий металлический стук, напоминающий частые удары молотком по наковальне и пропадающий при отключении форсунок, указывает на увеличение зазора между поршневым пальцем и втулкой, недостаточное смазывание или чрезмерно большое опережение начала подачи топлива.

Сопряжение поршневое кольцо -- канавка поршня проверяют на уровне н. м. т. хода поршня при средней частоте вращения коленчатого вала. Слабый, щелкающий стук высокого тона, похожий на звук от ударов колец одно о другое, свидетельствует об увеличенном зазоре между кольцами и поршневой канавкой либо об изломе колец.

Мощность и экономичность двигателя зависят от компрессии в цилиндрах. Компрессия снижается при значительном износе или поломке деталей цилиндропоршневой группы. Компрессию оценивают по давлению в камерах сгорания двигателя при такте сжатия и замеряют компрессометром.

Для проверки компрессии в цилиндрах компрессометром прогревают двигатель до температуры охлаждающей жидкости 80-- 90 °С после чего его останавливают.

Замер компрессии дизельного двигателя проводится при отжатом вниз рычаге отсечки и обесточенном электромагнитном клапане, отвечающем за прекращение подачи топлива, который расположен на магистрали.

Компрессометр подключают к отверстию для форсунки. Вращают коленчатый вал двигателя стартером 10 -- 12 оборотов. Давление в цилиндре отсчитывают по шкале манометра. Следует помнить, что для этого используют прибор, предназначенный для замеров компрессии дизельного двигателя с пределом измерения не менее 60 атмосфер. В исправном состоянии компрессия дизельного двигателя (значение, которое получено в результате замеров) должна быть в пределах 30 кг/см2.


Рис.10 Проверка компрессии компрессометром: 1 -- головка цилиндров, 2 -- резиновый наконечник, 3 -- шланг, 4 -- манометр, 5 -- клапан выпуска воздуха, 6 -- золотник

Для определения износа гильз измерения выполняют нутромером в двух взаимно перпендикулярных направлениях и в трех поясах. Одно направление устанавливают параллельно оси коленчатого вала. Первый пояс располагается на расстоянии 5--10 мм от верхней плоскости блока, второй -- в средней части гильзы и третий -- на расстоянии 15--20 мм от нижней кромки гильзы. Измерения производят индикаторным нутромером.

Гнезда коренных подшипников проверяют поверочной скалкой на деформацию. Если скалка входит в гнезда и без больших усилий поворачивается, то деформация отсутствует, износ, а также отклонение от соосности гнезд коренных подшипников можно установить специальным приспособлением (рис.12). Принцип действия его заключается в том, что скалка 2 с помощью втулок 3 фиксируется в гнездах вкладышей коренных подшипников. На скалке располагают (последовательно при вводе в гнезда) индикаторы для контроля каждого отверстия. Рычаги 7 индикаторных устройств вводят в измеряемое отверстие. Индикаторы устанавливают на нуль и закрепляют на скалке. При вращении скалки отклонения стрелок индикаторов покажут удвоенное отклонение от соосности каждого отверстия.


Рис.12 Приспособление для контроля гнезд коренных подшипников: 1--рычаг, 2--скалка, 3--втулки.

Для правки и контроля шатунов применяют различные приспособления. На приспособлении, показанном на рис.13, одновременно проверяют изгиб и скручивание шатуна, а также расстояние между центрами его головок. При обнаруженных отклонениях, превышающих допустимые значения, шатун правят специальным ключом без снятия с приспособления. При этом верхняя головка шатуна должна занимать положение между вертикальной и горизонтальной плитами. Шатун плотно устанавливают в приспособлении с помощью большой скалки 8, пропущенной через стойки 9. Малую скалку 10 вставляют в обработанное отверстие верхней головки шатуна. Вначале предварительно проверяют скрученность шатуна. Для этого шатун, установленный в горизонтальном положении, вручную поворачивают так, чтобы малая скалка 10 поочередно упиралась на сухари стоек 11. Наличие зазора указывает на наличие скручивания шатуна. Определение величины скручивания и изгиба производят при нахождении шатуна в вертикальном положении. При этом малая скалка 10, соприкасаясь с упорами коромысла 4, находится в контакте с штифтами 2 индикаторов 6 и 7, которые указывают скрученность шатуна.

Индикатор 5 устанавливает отклонение расстояния между осями отверстий верхней и нижней головок, а индикатора 6 -- непараллельность осей отверстий.

После правки и контроля, резко перемещая рукоятку 13, выбивают большую скалку 8, освобождая шатун. Перед началом работы индикаторы приспособления настраивают по эталонному шатуну.

Рис. 13 Приспособление для контроля и правки шатуна: 1, 5, 6, 7--индикаторы, 2--штифты, 3--ось коромысла, 4--коромысло. 8, 10--большая и малая скалки, 9, 11 --стойки, 12--плита, 13--рукоятка.

Предварительную оценку состояния сопряжений КШМ можно получить по величине давлении масла в главной магистрали и характеру стуков в определенных зонах двигателя.

Давление масла проверяют устройством КИ-5472 ГОСНИТИ, которое состоит из манометра, соединительного рукава с ниппелем и накидной гайкой, демпфера для сглаживания пульсации масла при измерении давления и сменных штуцеров. Чтобы измерить давление в главной магистрали дизеля, устройство подключают к корпусу масляного фильтра, отсоединив трубку штатного манометра.

Для проверки давления выполните следующие операции:

  • подсоедините к корпусу масляного фильтра КИ-5472
  • запустите и прогрейте до нормального теплового состояния двигатель
  • зафиксируйте давление масла в магистрали при номинальной и минимально устойчивой частоте вращения коленчатого вала на холостом ходу

Стуки в сопряжениях КШМ прослушивают при неработающем двигателе электронным автостетоскопом ТУ 14 МО.082.017, попеременно создавая в надпоршневом пространстве разрежение и давление с помощью компрессорно-вакуумной установки КИ-4912 ГОСНИТИ или КИ-13907 ГОСНИТИ. Прослушивают стуки в сопряжениях бобышки поршня - поршневой палец , поршневой палец - втулка верхней головки шатун а, шейка коленчатого вала - шатунный механизм .

Если давление масла ниже допустимых значений, при наличии стуков в сопряжениях коленчатого вала проверяют зазоры в указанных сопряжениях. При пониженном давлении масла и отсутствии стуков проверяют регулировку сливного клапана смазочной системы. Если это не даст положительных результатов, проверяют подачу масла насосом и состояние редукционного клапана смазочной системы на стенде.

Определение состояния КШМ по зазорам в его сопряжениях

Заключение о состоянии КШМ можно сделать по величине зазоров в его сопряжениях. Суммарный зазор в верхней головке шатуна и шатунном подшипнике замеряют устройством КИ-11140 ГОСНИТИ.

Для измерения зазоров необходимо:

  • установить проверяемого цилиндра в ВМТ на такте сжатия и застопорить коленчатый вал
  • закрепить устройство в головке цилиндров вместо , ослабив стопорный винт и приподняв направляющую с индикатором и штоком вверх
  • опустить направляющую до упора штока в днище поршня (натягом) и зафиксировать ее винтом
  • присоединить распределительный трубопровод компрессорно-вакуумной установки к штуцеру пневматического приемника
  • включить установку и довести давление и разрежение в ее ресиверах соответственно до 0,06-0,1 МПа и 0,06-0,07 МПа
  • выполнить два-три цикла подачи в надпоршневое пространство давления и разрежения переключением распределительного крана до получения стабильных показаний индикатора
  • соединить краном ресивер сжатого воздуха с надпоршневым пространством и настроить индикатор на нуль
  • плавно соединить ресивер разреженного воздуха с надпоршневым пространством и зафиксировать по индикатору сначала зазор в соединении поршневой палец - верхняя головка шатуна, затем суммарный зазор в верхней головке шатуна и шатунном подшипнике

Зазоры в КШМ измеряют 3-кратно и принимают среднее значение.

Если зазоры хотя бы у одного шатуна превышают допустимые значения, двигатель подлежит ремонту.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама