THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Любой разработчик может столкнуться с проблемой создания простого и надежного источника питания для конструируемого им устройства. В настоящее время существуют достаточно простые схемные решения и соответствующая им элементная база, позволяющие создавать импульсные источники питания на минимальном количестве элементов. Вашему вниманию предлагается описание одного из вариантов простого сетевого импульсного блока питания. Блок питания реализован на основе микросхемы UC3842. Эта микросхема получила широкое распространение, начиная со второй половины 90-х годов. На ней реализовано множество различных источников питания для телевизоров, факсов, видеомагнитофонов и другой техники. Такую популярность UC3842 получила благодаря своей малой стоимости, высокой надежности, простоте схемотехники и минимальной требуемой обвязке.

На входе блока питания (рис. 5.34), расположен сетевой выпрямитель напряжения, включающий плавкий предохранитель FU1 на ток 5 А, варистор Р1 на 275 В для защиты блока питания от превышения напряжения в сети, конденсатор С1, терморезистор R1 на 4,7 Ом, диодный мост VD1...VD4 на диодах FR157 (2 А, 600 В) и конденсатор фильтра С2 (220 мкФ на 400 В). Терморезистор R1 в холодном состоянии имеет сопротивление 4,7 Ом, и при включении питания ток заряда конденсатора С2 ограничивается этим сопротивлением. Далее резистор разогревается за счет проходящего через него тока, и его сопротивление падает до десятых долей ома. При этом он практически не влияет на дальнейшую работу схемы.

Резистор R7 обеспечивает питание ИМС в период запуска блока питания. Обмотка II трансформатора Т1, диод VD6, конденсатор С8, резистор R6 и диод VD5 образуют так называемую петлю обратной связи (Loop Feedback), которая обеспечивает питание ИМС в рабочем режиме, и за счет которой осуществляется стабилизация выходных напряжений. Конденсатор С7 является фильтром питания ИМС. Элементы R4, С5 составляют времяза-дающую цепочку для внутреннего генератора импульсов ИМС.

Трансформатор преобразователя намотан на ферритовом сердечнике с каркасом ETD39 фирмы Siemens+Matsushita. Этот набор отличается круглым центральным керном феррита и большим пространством для толстых проводов. Пластмассовый каркас имеет выводы для восьми обмоток.


Сборка трансформатора осуществляется с помощью специальных крепежных пружин. Следует обратить особое внимание на тщательность изоляции каждого слоя обмоток с помощью лакоткани, а между обмотками I, II и остальными обмотками следует проложить несколько слоев лакоткани, обеспечив надежную изоляцию выходной части схемы от сетевой. Обмотки следует наматывать способом «виток к витку», не перекручивая провода. Естественно, не следует допускать перехлеста проводов соседних витков и петель. Намоточные данные трансформатора приведены в табл. 5.5.

Выходная часть блока питания представлена на рис.1 Она гальванически развязана от входной части и включает в себя три функционально идентичных блока, состоящих из выпрямителя, LC-фильтра и линейного стабилизатора. Первый блок - стабилизатор на 5 В (5 А) - выполнен на ИМС линейного стабилизатора А2 SD1083/84 (DV, LT). Эта микросхема имеет схему включения, корпус и параметры, аналогичные МС KPI42EH12, однако рабочий ток составляет 7,5 А для SD1083 и 5 А для SD1084.

Второй блок - стабилизатор +12/15 В (1 А) - выполнен на ИМС линейного стабилизатора A3 7812 (12 В) или 7815 (15 В). Отечественные аналоги этих ИМС - КР142ЕН8 с соответствующими буквами (Б, В), а также Kl 157EH12/15. Третий блок - стабилизатор -12/15 В (1 А) - выполнен на ИМС линейного стабилизатора А4 7912 (12 В) или 7915 (15 В). Отечественные аналоги этих ИМС - K1162EH12J5.

Резисторы R14, R17, R18 необходимы для гашения излишнего напряжения на холостом ходу. Конденсаторы С12, С20, С25 выбраны с запасом по напряжению ввиду возможного возрастания напряжения на холостом ходу. Рекомендуется использовать конденсаторы С17, С18, С23, С28 типа К53-1А или К53-4А. Все ИМС устанавливаются на индивидуальные пластинчатые радиаторы с площадью не менее 5 см2.

Таблица 5.5

Контакты

Назначение

Предельный ток, А

Напряжение холостого хода, В

Первичная

4ХПЭВ-2, 0,15

Обратной связи

ЗхПЭВ-2, 0,15

Выход +5 В

4ХПЭВ-2, 0,35

Выход+15/12 В

2ХПЭВ-2, 0,35

Выход-15/12 В

2ХПЭВ-2, 0,35

Конструктивно блок питания выполнен в виде одной односторонней печатной платы, установленной в корпус от блока питания персонального компьютера. Вентилятор и входные сетевые разъемы используются по назначению. Вентилятор подключен к стабилизатору + 12/15 В, хотя возможно сделать дополнительный выпрямитель или стабилизатор на +12 В без особой фильтрации.

Все радиаторы установлены вертикально, перпендикулярно выходящему через вентилятор воздушному потоку. К выходам стабилизаторов подключены по четыре провода длиной 30...45 мм, каждый комплект выходных проводов обжат специальными пластиковыми зажимами-ремешками в отдельный жгут и оснащен разъемом того же типа, который используется в персональном компьютере для подключения различных периферийных устройств.

Параметры стабилизации определяются параметрами ИМС стабилизаторов. Напряжения пульсаций определяются параметрами самого преобразователя и составляют примерно 0,05% для каждого стабилизатора.

16-03-2015

UC3842

Ржевский Александр

Простой импульсный стабилизатор напряжения с защитой от перегрузок и короткого замыкания для зарядки аккумуляторных батарей большой емкости (от 55 ампер·часов) можно изготовить из распространенных радиодеталей, демонтированных из старых компьютерных мониторов и блоков питания. Особенностью предлагаемого стабилизатора является высокий КПД и, как следствие, минимальный нагрев компонентов. Принципиальная схема устройства изображена на Рисунке 1.

Стабилизатор основан на микросхеме ШИМ-модулятора в стандартной схеме включения с транзисторным инвертором в цепи обратной связи. Для более надежного управления MOSFET в схему добавлен транзисторный драйвер, способствующий ускоренному разряду емкости затвора при коммутации больших импульсных токов.

Защита от перегрузки по току построена стандартным образом. Датчиком тока служит резистор R9 сопротивлением 0.1 Ом.

Цепь защиты от короткого замыкания выделена на схеме синим цветом. При эксплуатации стабилизатора выяснилось, что при коротком замыкании выхода начинает греться и выходит из строя, если не устранить замыкание, диод 16C40. Для защиты диода от перегрева применена блокировка микросхемы модулятора с определенной временной задержкой. В случае короткого замыкания начинает заряжаться конденсатор С6, и примерно через 4 секунды открывается транзистор, блокирующий работу микросхемы по выводу 3. Для перезапуска стабилизатора нужно устранить короткое замыкание и кратковременно отключить его от питания.

Выходное напряжение регулируется подстроечным резистором R7. Расширить диапазон регулирования можно увеличением сопротивления резистора R6.

Подробнее о конструкции

Дроссель намотан на кольцевом магнитопроводе желтого цвета, демонтированном из компьютерного блока питания. Содержит 28 витков провода ПЭЛ-0.8. При токе 5 А нагревается до 40 градусов. Во избежание тресков и свиста обмотки следует пропитать суперклеем.

Резистор R9 намотан из нихромовой проволоки диаметром 0.7 мм длиной 60 мм. Края проволоки зачищены, обвиты медным проводом 0.8 мм по 3 витка с шагом 0.2 мм, обжаты плоскогубцами и запаяны. При токе 5 А резистор нагревается до 60 градусов.

Рисунок 2. Печатная плата стабилизатора напряжения.

На Рисунке 2 изображена печатная плата устройства (без цепи защиты диода). Транзистор и диод паяются на медь со стороны проводников, которая вместе с основанием платы и выполняет функцию их радиаторов, а с противоположной стороны крепится дроссель.

Печатная плата показана со стороны пайки. Использованы следующие цветовые обозначения:

  • зеленый - дорожки меди,
  • синий - расположение элементов,
  • белый - маркировка элементов схемы,
  • желтый - перемычки.

Исполнение: PDIP8. Current Mode PWM Controller Тип корпуса: PDIP-8 Топология: Boost, Buck, Flyback, Forward Режим управления: Current Частота...

Поставщик Производитель Наименование Цена
РИВ Электроникс STMicroelectronics UC3842BD1013TR 10 руб.
AliExpress RM6204 UC3842B AM-22A BP3126 UC3845B TL081 TL081CP SM7055 SM7055-12 MAX483CPA MAX483EPA OB2538AP VIPER12A 10 руб.
Ким Infineon UC3842AMSMD 14 руб.
МосЧип Texas Instruments UC3842ANANDUC2842ANG по запросу
  • ... 1. предлагаю автору пересмотреть голубой участок схеми 2. на лапу 6 поставить 10-12к 3. на затвор зенер в 10 в 4. для плавности хода последовательно Р7 подсоединить 5к...
  • Короткое замыкание является перегрузкой по току? Для чего тогда добавлено "синим цветом", если есть R9 ? Я понимаю, что при КЗ нагрузкой подключается индуктивность, и обратными токами шунтируется через нагреваемый диод. Но зачем тогда R9 ... да и регулировать надо в основном не напругу, а ток...
  • Я так понимаю... синяя схема для установки начального выходного напряжения, а R9 ... защита по току... просто всё заведено на один вход... и как стабильно будет работать... вопрос...
  • В статье же написано
  • Хочу поблагодарить автора за идею использования такой класной ИМС в устройствах такого плана. Позвольте маленькие замечания, на мой взгляд:мне кажется, ключ который стоит на разряд емкости затвора не нужен. Ток коллектора 361 - 250 мА, а 3842(согласно datasheet Io= +-1А) если бы использовать 34063 тогда обязательно нужно. Управление выходным напряжением лучше реализовать на токовом зеркале, правда хлопотно в настроке, можно просто поставить преобразователь напряжения в ток: т.е. вцепь эмитера того же по схеме 361 включить резистор 12к(например), базу через 33-51Ом соединить на выход. т.о на эмитере будет выходное Uвых источника. Ток коллектора будет Ik = Uвых/12к. Остается подсчитать Uвх=1mA.
  • Боже мой как все запущенно. Я могу создать на базе шим контроллера UC3842 усилитель класса D, а с усилителя параметрический стабилизатор, но с головой пока еще дружу
  • всем привет. интересно кому нужна эта крайне запутаная и криво - вывернутая схема. кто ее видит и немного разбираеться наверное прибывает в шоке. не нужен там доп транзистор он слабый микра 1ампер выход -уже писали сам транзистор эн -канал надо ставить на плюс как и везде в дс -дс понищалках. для частоты этой витком мало в два раза или на 10витков больше примерно для кольца 23.5мм если 27мм то может инорма. почемуто тоже не где не сказано про диаметр ферита жолтого.что залюди - так добрей мир не получиться каждый кто захочит повторить эту схему запариться и будет прибывать 1-2 месяца без настроения и все потом бросит неполучив минимальног удовлетворения пока ее будет собирать и еще подпитка нужна на 3 ногу то не запуститься. также на первой ноге можно сделать плавный старт нужно 3 детали -есть в пдефах. будьте добрей и хлам из кита нам будет не нужен он часто летит и н еремонтопригоден так как все детали у них косячные -поверьте и как правило затерты названия чипов.
  • неужели нету негде на форумах реально рабочей схемы дс дс понижалки что этоо секретная штука какаято давайте обсуждать реально рабочую схему- в студию
  • Так она напряжение на выходе не контролирует по вашему... и начальный порог срабатывания не задаёт? ... :mad: Не всё что пишут на санной упряжке... правда... :p
  • Есть: http://forum.cxem.net/index.php?showtopic=77467 http://kazus.ru/forums/showthread.php?p=137986 http://radiokot.ru/forum/viewtopic.php?f=11&t=39128 Но не для столь безграмотных. Ибо "мизера парами ходят"...
  • пожалуйста переведите высказывание для неграмотных - Ибо "мизера парами ходят" - вы очень умный человек а многие тут бывают и негамотные заходят. и зачем вы дали 3 ссылки про атх ибп на тл494 -не потеме тут речь идет про железный трансформатор и стаб вроде обсуждаем дс дс стабтилизатор понижалку на вс3843- 42 .я просто сказал что я не собираюсь покупать киты зы 700-1000ре с затертыми редкими микросхемами.а тут 3843 10апер как скуста да даже 6ампер хватит для мощьного компа.плюс железный транс нефонит и недает помех как ибп атх на 494 если конечто правильно платка разведена стаба. пусть жележо будет кушать больше на 20ват но и нормуль.еще понял что человеку когда нечего сказать в ответ то он пишет поговорками. правду же я написал про эту схему и многие это понимают.
  • может кому пригодиться прога для расчета дросселя жолтого-белого кольца в инете на форумах везде -показывает при расчете бяку витков в два раза больше и индуктивность дросселя тоже сравнивал со своим дс дс платой фирмы компад извесная и качественная из сторья нашол и спецом разнюхал это. но может я путаю с частотой ср -цепю. и микра непомню какая стояла 3843 90 проц заполнения или 3845 вроде 50 проц - меня направте кто знает какя микра должна стоять в дс дс понижалке -с 50 процентным заполнением синусоиды шима или 90. знаю только что питание полевиков которые на плате компад прим 12волт. то какую микру ставить из двух с напругой старта 8.4в. :confused:
  • 1 Синяя схема для любителей проверки выходного напряжения путем короткого замыкания выхода (если искрит то работает). 2 Был случай что, в момент зарядки расплавилась изоляция провода соединявшего АКБ и зарядку. Произошло КЗ и как на зло провода слиплись, со стороны АКБ расплавились, а со стороны зарядки осталось КЗ. Если есть гарантия избежать приведенные случаи, то синяя вставка не нужна вовсе. Если гарантируется скваженность до 50% то 315 в затворе не нужен. Но это условие не выполнимо в начальное время заряда АКБ.

Рассмотрим как сделать схему преобразователя для питания сверхъяркого светодиода. Такая схема может стать хорошим стартом для практического изучения электроники. На основе этого преобразователя в дальнейшем соберем своими руками несколько интересных и полезных электронных самоделок.

Как сделать преобразователь напряжения своими руками

Первая трудность в сборке схемы это приобретение ферритового кольца. Ферритовые кольца неотъемлемая часть устройств с импульсными источниками питания (компьютеры, телевизоры, мониторы, видеомагнитофоны и т.д.) Найти такую старую или сломанную технику не составит труда. Например, несколько колец можно найти в блоке питания компьютера в дросселях фильтра питания. Дроссели удаляются с платы, обмотки демонтируются освобождая ферритовое кольцо.

Блок питания компьютера

Добытые дроссели

Вторая трудность в сборке схемы это поиск обмоточного провода. Провод также легко доступен, два куска провода в изоляции легко добыть из сетевого интернет кабеля типа UTP, двух проводков длиной 0,5-1 м вполне хватит.

Кусок кабеля UTP

Проводники для намотки

Радиодетали, также выпаиваются из устаревшей или неисправной техники. Необходимо одно сопротивление номиналом 300 Ом — 10 кОм, любой транзистор n-p-n структуры и конечно светодиод. Цоколевку транзистора определяем задав в поисковике запрос «маркировка транзистора datashit». Допустимо установить в схему транзисторы структуры p-n-p, но для этого необходимо будет поменять полярность питания схемы и светодиода.

Сборка тороидального трансформатора показана на видео. Обмотки наматывается своими руками сразу в два провода. Средняя точка формируется соединением начала одной обмотки с концом другой. Смотри фото. Количество витков 10-30 витков.

Намотка проводов

Обмотки трансформатора

Формирование средней точки

Правильно собранная схема начинает работать сразу. Применение тороидального трансформатора, по сравнению со схемой , резко повышает КПД и экономичность схемы преобразователя. Преобразователь запустится даже при подаче напряжения 0,3 вольта(!) и выдаст напряжение для работы светодиода 2,5-3 Вольта. Если есть вопросы — спрашивайте!

Зарядное устройство на UC3842/UC3843 с регулировкой напряжения и тока

Описываемое здесь зарядное устройство предназначено для зарядки свинцово-кислотных аккумуляторов. Имеются две регулировки: напряжения и тока. Когда срабатывает одна из этих регулировок, загорается соответствующий светодиод, что очень удобно. Схема и печатная плата взяты на форуме радиокота:

Устройство собрано на распространённой микросхеме UC3842/UC3843. Её применение в блоках питания мы уже описывали . В данной схеме регулировка происходит по 1 выводу. Силовая часть - типовая, микросхема питается от отдельной обмотки на обратном ходе.


нажми для увеличения
Регулировка напряжения и тока выполнена по схеме от форумчанина FolksDoich. На TL431 собран источник опорного напряжения. На половинках ОУ LM358 выполнены регулировки напряжения и тока. Если в качестве VD6 и VD7 использовать светодиоды, то они будут индицировать своим свечением текущую регулировку, что может быть полезно. Например, если светится светодиод VD7, то происходит ограничение по току. То же самое с VD6, но по напряжению.

Данная схема рассчитана на зарядку аккумулятора током до 6 ампер, поэтому на выходе предлагается запараллелить четыре электролитических конденсатора, т.к. один при высоком токе проработает недолго. Разумеется, все они должны быть LOW ESR.

Как можно улучшить эту схему? Если по ней собирать не зарядное устройство, а блок питания, регулируемый в некоторых пределах, то можно произвести уже привычные улучшения, описанные в предыдущей статье. В частности, можно питать микросхему UC3842/UC3843 на прямом ходе, а для питания ОУ и PC817 использовать отдельную обмотку трансформатора. Всё это оправдано лишь в том случае, если требуется расширить диапазон регулировки напряжения.

Помимо светодиодов, схему можно дополнить амперметром и вольтметром, как стрелочными, так и цифровым прибором, показывающим значение напряжения и тока, а, возможно, ещё и подсчитывающим мощность нагрузки и управляющим вентилятором охлаждения.

При правильном выборе силового полевого транзистора, его нагрев должен быть незначительным. Следует упомянуть, что на схеме забыли нарисовать конденсатор на 2,2 нФ между горячей и холодной частями.


Печатная плата: charger_12v_6a.lay6


Существует и ещё одна разновидность данной схемы в таком виде:


нажми для увеличения
Печатные платы от FolksDoich для устройств разной мощности, вторая плата - до 10 ампер. Микросхема UC384x располагается на отдельной небольшой платке, устанавливаемой на основную вертикально.


Как минимум один раз в жизни каждый автомобилист сталкивается с проблемой неработающего аккумулятора. Чтобы предотвратить такую неисправность, необходимо правильно обслуживать батарею и вовремя ее заряжать, используя зарядное устройство. Что представляет собой импульсное ЗУ для автомобильного аккумулятора, каков его принцип функционирования и как соорудить прибор своими руками — читайте далее.

[ Скрыть ]

Характеристика прибора

Устройства, предназначенные для АКБ, делятся на несколько типов — трансформаторные и импульсные. Трансформаторные ЗУ для аккумулятора авто обладают большим весом и размерами, при этом их коэффициент полезного действия значительно ниже, чем у других устройств. В результате спрос на такие зарядки постепенно снизился. На сегодняшний день импульсное зарядное устройство является наиболее популярным типом.

Устройство и принцип работы

Любое импульсное зарядное устройство для автомобильного АКБ представляет собой прибор, предназначенный для восстановления заряда.

Конструктивно импульсное ЗУ состоит из таких элементов:

  • трансформатора (импульсного);
  • устройства выпрямителя;
  • прибора стабилизатора;
  • элементов индикации;
  • основного блока, предназначенного для контроля процедуры заряда.

Необходимо отметить, что все элементы, из которых состоит импульсное зарядное устройство, по своей конструкции имеют небольшие размеры, если сравнивать с трансформаторными ЗУ. В принципе, соорудить такой прибор для зарядки автомобильного АКБ своими руками не так сложно — для этого потребуется только плата, которая будет управлять транзистором. В результате того, что конструкция данного типа приборов довольно простая, а компоненты для изготовления легко доступны, импульсные ЗУ популярны среди наших автолюбителей.


Что касается принципа работы, то сама процедура заряда может осуществляться одним из нескольких методов:

  • путем напряжения при постоянном токе;
  • напряжением неизменных параметров;
  • комбинированным методом.

В принципе, способ напряжения неизменных значений является самым правильным с теоретической точки зрения. Все потому, что импульсные ЗУ для автомобильных АКБ могут производить контроль в автоматическом режиме за параметрами силы тока только в том случае, если напряжение будет постоянным. Если вы хотите добиться того, чтобы уровень зарядки был наиболее максимальным, надо учитывать и параметр разряда.

Что касается способа напряжения при постоянном токе, то этот вариант не самый оптимальный. Все потому, что при оперативной зарядке аккумулятора, получаемой в результате воздействия постоянного тока, пластины прибора могут попросту осыпаться. А восстановить их будет уже невозможно.


Комбинированный вариант зарядки АКБ является одним из наиболее щадящих. При применении данного способа сначала проходит постоянный ток, а в самом конце процедуры он начинает изменяться на переменный. Далее, этот параметр постепенно снижается до нуля, таким образом стабилизируя уровень напряжения. По словам специалистов, такая схема работа позволяет предотвратить или снизить к минимуму вероятность закипания аккумулятора авто. Кроме того, при таком подходе снижается и вероятность выделения газов.

Аспекты подбора оборудования

Если вы хотите добиться того, чтобы батарея авто работала должным образом, необходимо заранее подумать о том, чтобы купить необходимое ЗУ для зарядки.

Есть определенные нюансы этого вопроса, которые желательно учитывать:

  1. В первую очередь, многих потребителей интересует вопрос — сможет ли ЗУ, работая по своей схеме, восстановить полностью разряженную АКБ авто. Здесь нужно учитывать, что далеко не все зарядные устройства, продающиеся в автомагазинах, могут справиться с такой задачей. Поэтому при покупке данный момент необходимо уточнять у продавцов.
  2. Второй, немаловажный аспект — это уровень максимального параметра тока, который выдает зарядное устройство в ходе функционирования. Кроме того, нужно учитывать и напряжение, до которого будет заряжаться аккумулятор авто. К примеру, если вы остановите свой выбор на импульсном ЗУ, то учтите, что в нем должна быть опция отключения или функция поддержки, включающаяся автоматически при полном заряде (автор видео — ChipiDip).

При эксплуатации ЗУ своими руками нужно учитывать несколько моментов. В первую очередь, это последовательность действий. Для начала рекомендуется демонтировать крышку устройства и открутить пробки. Если необходимо добавить электролит в систему, для этого используйте дистиллированную воду, сделать это нужно до того, как будет осуществлена процедура заряда.

Учтите несколько параметров:

  1. Уровень напряжения. Максимальный показатель в данном случае должен составлять не более 14.4 вольт.
  2. Сила тока. Этот параметр регулируется, для этого учитывайте уровень разрядки батареи. К примеру, если батарея авто разряжена на 25%, то при активации ЗУ параметр силы тока может возрасти.
  3. Время заряда аккумулятора авто. В том случае, если на ЗУ нет никаких индикаторов, то понять, когда аккумулятор авто заряжен, можно по показателю величины тока. В частности, если этот параметр в течение трех часов не будет изменяться, то это будет свидетельствовать о том, что батарея заряжена.

Никогда не заряжайте прибор более 24 часов, это приведет к тому, что электролит просто закипит, а внутри схемы произойдет замыкание.

Инструкция по изготовлению импульсного ЗУ своими руками


Чтобы соорудить ЗУ для аккумулятора авто своими руками, применяется схема IR2153. Данная схема отличается от схемы производства обычного ЗУ тем, что вместо двух конденсаторов, подсоединенных к средней точки, используется только один электролит. Следует отметить, что данная схема изготовления своими руками позволяет сделать ЗУ для аккумулятора авто, рассчитанное на небольшую мощность. Но и эту проблему можно решить, используя более мощные элементы.

В схеме, приведенной выше, применяются ключи типа 8N50, оборудованные изолированным корпусом. Что касается диодных мостов, то лучше использовать те, которые устанавливаются в компьютерные блоки питания. Если такого элементы схемы у вас нет, то можно попробовать собрать диодные мост из четырех выпрямительных диодов (автор видео о создании ЗУ для АКБ авто — Blaze Electronics).

Теперь перейдем к цепи питания устройства схемы. Для обустройства данного компонента своими руками применяется резистор для гашения тока, используйте устройство на 18 кОм. После резистора на схеме идет обычный выпрямительный компонент, установленный на одном диоде, при этом само питание будет в любом случае поступать на плату. Непосредственно на питании стоит электролит, которые параллельно подключен к конденсатору (этот элемент может быть либо пленочным, либо керамическим). Применение конденсатора необходимо для того, чтобы обеспечить наиболее оптимальное сглаживание импульсов и помех.

Что касается трансформатора, то его также можно демонтировать из блока питания ПК. Следует отметить, что такой трансформатор отлично подходит для создания зарядного устройства аккумулятора, поскольку он позволяет обеспечить хороший ток на выходе. Кроме того, трансформатор такого типа может обеспечить одновременно несколько параметров выходных напряжений. Сами диоды должны быть только импульсными, поскольку стандартные элементы не смогут функционировать в результате слишком высокой частоты.

Фильтр можно не добавлять в схему, но вместо него желательно установить несколько емкостей и сам дроссель. Чтобы снизить уровень бросков на входе до фильтрующего элемента, желательно добавить в схему термистор на 5 Ом. Этот элемент также можно вытащить своими руками из блока питания ПК. Важным моментом будет установка электролитического конденсатора. Его необходим подобрать, опираясь на специальное отношение 1 Ватт — 1 мкФ, уровень напряжения должен составлять 400 вольт.

В целом такая схема по своей конструкции является достаточно простой. На практике, если подойти к этому вопросу правильно, то соорудить будет не так сложно, даже если у вас нет опыта. А учитывая то, что у вас под рукой будет материал со всеми необходимыми схемами и обозначениями, справиться с такой задачей будет проще простого. Разумеется, если вы не можете отличить трансформатор от резистора, то лучше просто пойти в магазин и купить нужное зарядное устройство.

Видео «Изготовление импульсного зарядного устройства своими руками»

Все нюансы, которые необходимо учесть, а также подробная пошаговая инструкция по изготовления импульсного ЗУ для автомобильного АКБ, приведена ниже (автор видео — Паяльник TV).

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама