THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

С тех пор как возобновил свою радиолюбительскую деятельность, меня часто посещала мысль о качественном и универсальном . Имевшийся в наличии и произведенный лет 20 назад блок питания имел лишь два напряжения на выходе - 9 и 12 вольт при токе порядка одного Ампера. Остальные необходимые в практике напряжения приходилось «выкручивать» добавляя разные стабилизаторы напряжения, а для получения напряжений выше 12 Вольт - использовать трансформатор и разные преобразователи.

Такая ситуация порядком надоела и стал присматривать схему лабораторника в интернете для повторения. Как оказалось многие из них это одна и та же схема на операционных усилителях, но в разных вариациях. При этом на форумах обсуждения этих схем на тему их работоспособности и параметров напоминали тему диссертаций. Повторять и тратиться на сомнительные схемы не хотелось, и во время очередного похода на Алиэкспресс вдруг набрел на набор конструктора линейного блока питания с вполне приличными параметрами: регулируемым напряжением от 0 до 30 Вольт и током до 3 Ампер. Цена в 7,5 $, делала процесс самостоятельной покупки компонентов, разработки и травлением платы просто бессмысленным. В итоге, получил по почте вот такой набор:

Не взирая на цену набора, качество изготовления платы могу назвать отменным. В комплекте даже оказалось два лишних конденсатора на 0,1 мкф. Бонус - пригодятся)). Все что нужно сделать самому - это «включив режим внимания», расставить компоненты по своим местам и спаять. Китайские товарищи позаботились о том, чтобы перепутать, что либо смог только человек, впервые узнавший о батарейке и лампочке - на плату нанесена шелкография с номиналами компонентов. В финале получается вот такая плата:

Характеристики лабораторного блока питания

  • входное напряжение: 24 В переменного тока;
  • выходное напряжение: от 0 до 30 В (регулируемое);
  • выходной ток: 2 мА - 3 А (регулируемый);
  • пульсации выходного напряжения: менее 0.01%
  • размер платы 84 х 85 мм;
  • защита от короткого замыкания;
  • защита по превышению установленной величины тока.
  • О превышении установленного тока сигнализирует светодиод.

Для получения полноценного блока следует добавить лишь три компонента - трансформатор с напряжением на вторичной обмотке 24 вольта при 220 вольтах на входе (важный момент, о котором подробно ниже) и током 3,5-4 А, радиатор для выходного транзистора и кулер на 24 Вольта для охлаждения радиатора при большом токе нагрузки. Кстати, в интернете нашлась и схема данного блока питания:

Из основных узлов схемы можно выделить:

  • диодный мост и фильтрующий конденсатор;
  • регулирующий узел на транзисторах VT1 и VT2;
  • узел защиты на транзисторе VT3 отключает выход, пока питание операционных усилителей не будет нормальным
  • стабилизатор питания вентилятора на микросхеме 7824;
  • на элементах R16, R19, C6, C7, VD3, VD4, VD5 построен узел формирования отрицательного полюса питания операционных усилителей. Наличие этого узла обуславливает питание всей схемы именно переменным током от трансформатора;
  • выходные конденсатор С9 и защитный диод VD9.

Отдельно нужно остановиться на некоторых компонентах примененных в схеме:

  • выпрямительные диоды 1N5408, выбраны впритык - максимальный выпрямленный ток 3 Ампера. И хоть диоды в мосте работают попеременно, все же не будет лишним заменить их более мощными, например диодами Шотки на 5 А;
  • стабилизатор питания вентилятора на микросхеме 7824 выбран на мой взгляд не совсем удачно - под рукой у многих радиолюбителей наверняка найдутся вентиляторы на 12 вольт от компьютеров, а вот куллеры на 24 В встречаются гораздо реже. Покупать такой не стал, решив заменить 7824 на 7812, но в процессе испытаний БП отказался от этой идеи. Дело в том, что при входном переменном напряжении в 24 В, после диодного моста и фильтрующего конденсатора получаем 24*1,41=33,84 Вольта. Микросхема 7824 прекрасно справится с задачей рассеивания лишних 9, 84 Вольта, а вот 7812 приходится тяжко, рассеивая в тепло 21,84 Вольта.

Кроме того, входное напряжение для микросхем 7805-7818 регламентировано производителем на уровне 35 Вольт, для 7824 на уровне 40 Вольт. Таким образом, в случае простой замены 7824 на 7812, последняя будет работать на грани. Вот ссылка на даташит .

Учитывая вышеприведенное, имевшийся в наличии кулер на 12 Вольт подключил через стабилизатор 7812, запитав ее от выхода штатного стабилизатора 7824. Таким образом, схема питания кулера получилась хоть и двухступенчатой, но надежной.

Операционные усилители TL081, согласно даташита требуют двуполярное питание +/- 18 Вольт - в целом 36 Вольт и это максимальное значение. Рекомендуемое +/- 15.

И вот тут начинается самое интересное относительно переменного входного напряжения величиной 24 Вольта! Если взять трансформатор, который при 220 В на входе, выдает 24 В на выходе, то опять же после моста и фильтрующего конденсатора получаем 24*1,41=33,84 В.

Таким образом, до достижения критической величины остается всего 2,16 Вольта. При увеличении напряжения в сети до 230 Вольт (а такое бывает в нашей сети), с фильтрующего конденсатора снимем уже 39,4 Вольта постоянного напряжения, что приведет к гибели операционных усилителей.

Выхода тут два: либо заменить операционные усилители другими, с более высоким допустимым напряжением питания, либо уменьшить количество витков во вторичной обмотке трансформатора. Я пошел по второму пути, подобрав количество витков во вторичной обмотке на уровне 22-23 Вольта при 220 В на входе. На выходе БП получил 27,7 Вольта, что меня вполне устроило.

В качестве радиатора для транзистора D1047 нашел в закромах радиатор процессора. На нем же закрепил стабилизатор напряжения 7812. Дополнительно установил плату контроля оборотов вращения вентилятора. Ею со мной поделился донорский компьютерный блок питания ПК. Терморезистор закрепил между ребер радиатора.

При токе в нагрузке до 2,5 А вентилятор вращается на средних оборотах, при повышении тока до 3 А в течении длительного времени вентилятор включается на полую мощность и снижает температуру радиатора.

Индикатор цифровой для блока

Для визуализации показаний напряжения и тока в нагрузке применил вольтамперметр DSN-VC288, который обладает следующими характеристиками:

  • диапазон измерений: 0-100 В 0-10A;
  • рабочий ток: 20mA;
  • точность измерения: 1%;
  • дисплей: 0.28 " (Два цвета: синий (напряжение), красный (сила тока);
  • минимальный шаг измерения напряжения: 0,1 В;
  • минимальный шаг измерения силы тока: 0,01 A;
  • рабочая температура: от -15 до 70 °С;
  • размер: 47 х 28 х 16 мм;
  • рабочее напряжение, необходимое для работы электроники ампервольтметра: 4,5 - 30 В.

Учитывая диапазон рабочего напряжения существует два способа подключения:

  • Если источник измеряемого напряжения работает в диапазоне от 4,5 до 30 Вольт , то тогда схема подключения выглядит так:

  • Если источник измеряемого напряжения работает в диапазоне 0-4,5 В или выше 30 Вольт , то до 4,5 Вольт ампервольтметр не запустится, а при напряжении более 30 Вольт он просто выйдет из строя, во избежание чего следует воспользоваться следующей схемой:

В случае с данным блоком питания, напряжение для питания ампервольтметра есть из чего выбрать. В блоке питания есть два стабилизатора - 7824 и 7812. До 7824 длина провода получалась короче, поэтому запитал прибор от него, подпаяв провод к выходу микросхемы.

О проводах из комплекта

  • провода трехконтактного разъема тонкие и выполнены проводом 26AWG - толще тут и не нужно. Цветная изоляция интуитивно понятна - красный это питание электроники модуля, черный это масса, желтый — измерительный провод;
  • провода двухконтрактного разъема - это провода токоизмерительные и выполнены толстым проводом 18AWG.

При подключении и сравнении показаний с показаниями мультиметра, расхождения составили 0,2 Вольта. Производитель предусмотрел подстроечные сопротивления на плате для калибровки показаний напряжения и тока, что является большим плюсом. В некоторых экземплярах наблюдается отличные от нуля показания амперметра без нагрузки. Оказалось, что решить проблему можно сбросом показаний амперметра, как показано ниже:

Картинка из интернета, потому прошу простить за грамматические ошибки в надписях. В общем со схемотехникой закончили -

Здравствуйте, предлагаю обзор импульсного регулируемого блока питания Wanptek KPS305D. Выходное напряжение: 0...30 В
Выходной ток: 0...5 А
Сразу скажу, блок питания ни плох, ни хорош, так, средненький. Конечно же не обошлось и без «косяков».
В обзоре подробные фото, внутренности, тесты…

Мотивация:

У меня есть лабораторный регулируемый блок питания ещё советского производства с выходным напряжением 0...15В и током 0...1А. И в принципе, мне его почти всегда хватало. Но иногда, при тестировании различных электронных устройств, появляется необходимость в бОльших токах и напряжениях. Вот я и решил взять на обзор данный БП, чтобы убить 2 зайцев: и обзор написать и БП бесплатно получить. Скажу честно, если бы я его купил, то не стал бы так подробно изучать и анализировать. Но для обзора анализ важен. Поэтому вперед!

Упаковка и комплектация:

Коробка картонная с монохромной полиграфией. Внутри блок питания (БП) в полиэтиленовом пакете с вставками из вспененного полиэтилена.
В комплекте:
- блок питания;
- инструкция на английском языке;
- выходной кабель с зажимами «крокодил»;
- кабель питания с «евровилкой».




Герой обзора:

Блок питания представляет из себя параллелепипед размером 220х165х81 мм. Передняя часть корпуса выполнена из белого пластика, остальной корпус металлический.


На передней части присутствуют:
- светодиодный индикатор тока и напряжения, а также режимов работы: регулировка напряжения или ограничение тока;
- 4 регулятора: напряжение (грубо, плавно) и ток (грубо, плавно);
- выключатель питания;
- выходные клеммы.
На задней части расположены:
- щели для вентилятора охлаждения;
- переключатель входного питания (110/220 В);
- гнездо подключения питающего кабеля с отсеком для предохранителя.
На нижней части находятся 4 резиновые ножки и вентиляционные щели.

Разборка:

Перед включением в сеть различного рода устройств, особенно китайского производства, я стараюсь сначала убедиться, что подача питания безопасна и не приведёт к каким-либо нехорошим последствиям. Поэтому и здесь я сначала решил рассмотреть внутренности.
Для вскрытия корпуса необходимо открутить 8 винтов и снять верхнюю крышку.

К дну корпуса прикручена алюминиевая пластина толщиной 3 мм, которая выполняет роль радиатора. На этой пластине закреплена плата с силовыми элементами. Еще одна плата установлена в переднюю панель и соединена с первой гибким плоским шлейфом.Практически все провода подключены к платам через разъёмы. Это несомненно удобно, но не всегда хорошо, но об этом ниже.
Рассмотрим подробно основную плату:
Первое, что мне бросилось в глаза - большое количество моточных элементов: 3 трансформатора и 3 дросселя, а именно:
- входной помехоподавляющий дроссель;
- силовой трансформатор;
- трансформатор вспомогательного источника питания;
- развязывающий трансформатор управления силовыми транзисторами;
- дроссель инвертора;
- выходной помехоподавляющий дроссель.
Второе, что бросилось в глаза - кривость рук сборщика, который распаивал силовые транзисторы на радиаторе. Ну не знаю, я вроде бы далеко не перфекционист, но смотреть на такое мне тяжело. Ничего, поправлю.
Итак, пройдёмся по основным узлам.
Начнём с входного фильтра. Схема фильтра не идеальна, но он есть и это уже плюс.

Состоит фильтр из:
- термистора, который ограничивает ток заряда электролитических конденсаторов;
- двухобмоточного дросселя;
- конденсаторов до и после дросселя;
- и двух конденсаторов на «корпус».
Далее установлен диодный мост и 2 электролитических конденсатора, включенных последовательно.
Схема входного фильтра и выпрямителя следующая (я поленился указывать номиналы):
Коммутатор на схеме это переключатель входного напряжения. При питании от сети 220 вольт, коммутатор должен быть разомкнут.
Идём дальше по функциональным модулям. Ввиду того, что блок питания регулируемый, да ещё и со светодиодными индикаторами, которые требуют дополнительного питания, то становится ясна необходимость в отдельном источнике питания собственных нужд. И такой источник питания имеется на плате, более того, он даже импульсный и собран этот источник на микросхеме TNY277 и отдельном трансформаторе.
Идём дальше. Посмотрим на силовые транзисторы:

Ну ужас, без слёз смотреть на это невозможно.
Открутим плату от радиатора, для чего необходимо удалить 4 винта по углам платы и 3 крепёжных винта с транзисторов.


На обратной стороне платы, кроме криво припаянных транзисторов и термистора, других элементов нет. При ближайшем рассмотрении оказалось, что транзисторов всего два, это n-канальные полевые транзисторы с изолированным затвором 2SK3569 (средний и левый), а правый это 2 выпрямительных диода в корпусе ТО-220.
Термистор нужен для измерения температуры радиатора и включения вентилятора при перегреве.
Между транзисторами можно заметить «доработку». Печатная плата была разведена с ошибкой, дорожку перерезали и припаяли перемычку. Это говорит о достаточно мелкосерийном производстве данных БП. Т.к. дешевле оказывается вручную дорабатывать плату, чем запустить изготовление исправленных печатных плат.
Для управления силовыми транзисторами используется развязывающий трансформатор:
Похоже что все трансформаторы пропитаны лаком. Хотя, возможно, они лаком просто покрыты.
Единственный модуль, оставшийся без внимания на данной плате - выходные выпрямитель и фильтр. Выпрямителя я слегка коснулся при рассмотрении силовых транзисторов. Диодная сборка на радиаторе в корпусе ТО-220 и есть выходной выпрямитель. Выходной фильтр состоит из 4 электролитических конденсаторов, дросселя и двух шунтов.
Схема выходных выпрямителя, фильтра и шунтов следующая:
На этом основные блоки силовой платы оказались рассмотренными. Чего я не нашёл на этой плате? Нет ШИМ контроллера. Оказалось, что он находится на плате управления и индикации.
Итак, вот плата управления и индикации:
Плата и функционально и физически разбита на 2 части: индикации и управления и ШИМ контроллера. ШИМ контроллер оказался одним из самых распространённых TL494. Такие контроллеры широко используются, например, в компьютерных блоках питания.
Часть платы, отвечающая за управление и индикацию собрана с применением 8 разрядного микроконтроллера STM8S003F3, для управления 7 сегментными светодиодными индикаторами используется специализированный контроллер TM1638.
Ну вот, с рассматриванием «потрохов» закончили.

Доработка:

Ну не могу я смотреть на эти кривые транзисторы. А раз так, я их выпрямил.Ещё я отключил от платы переключатель входного напряжения. Так, на всякий случай.
Также мне не нравится то, что на одном радиаторе установлены и силовые транзисторы и выходной диодный мост. Да, и транзисторы и мост имеют изолированный корпус, но я рекомендую установить теплопроводящую изолирующую прокладку.

Тестирование:

Для начала проверим точность измерения напряжения и тока:

С точностью всё в полном порядке.
Посмотрим на уровень пульсаций. Для этого к выходу БП дополнительно был подключен осциллограф:
При малом токе потребления пульсаций почти нет, но вот при увеличении нагрузки, пульсации тоже возрастают. Ниже осциллограммы при токе 1А и 5А соответственно:

При 1 ампере амплитуда пульсаций составляет 80 мВ, при 5 амперах увеличивается до 150 мВ.
Это не есть плохо, но и не хорошо. Так, средненько.

Итог:

Блок питания работает и выдаёт заявленные 30 вольт и 5 Ампер. Пользоваться данным БП вполне можно, но лучше перед использованием доработать: поставить теплопроводящую изолирующую прокладку между силовыми транзисторами и радиатором. Также к минусам можно отнести неряшливый монтаж (криво установленные транзисторы), приличный уровень пульсаций.
К плюсам можно отнести точность индикации тока и напряжения во всём диапазоне, использование стандартных элементов (ремонтопригодность).
В общем блок питания далеко не идеальный, такой середнячок, для домашнего использования пойдёт. У меня не было зарядного устройства для автомобильного аккумулятора, теперь оно есть:)

Удачи! Надеюсь информация пригодится.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 - ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник...
Шаг 1: Какие детали необходимы для сборки блока питания...
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок....
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В - 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ - 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты....
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие...


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку - типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 - 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения...
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы - отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 - ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

В этой статье мы продолжаем тему схемотехники блоков питания для радиолюбительских лабораторий. На сей раз речь пойдет о самом простом устройстве, собранном из радиодеталей отечественного производства, и с минимальным их количеством.

И так, принципиальная схема блока питания:

Как видите, все просто и доступно, элементная база имеет широкое распространение и не содержит дефицитов.

Начнем с трансформатора. Мощность его должна быть не менее 150 Ватт, напряжение вторичной обмотки – 21…22 Вольта, тогда после диодного моста на емкости С1 вы получите порядка 30 Вольт. Рассчитывайте так, чтобы вторичная обмотка могла обеспечивать ток 5 Ампер.

После понижающего трансформатора стоит диодный мост, собранный на четырех 10-ти амперных диодах Д231. Запас по току конечно хороший, но конструкция получается довольно громоздкая. Наилучшим вариантом будет использование импортной диодной сборки типа RS602, при небольших габаритах она рассчитана на ток 6 Ампер.

Электролитические конденсаторы рассчитаны на рабочее напряжение 50 Вольт. С1 и С3 можно ставить от 2000 до 6800 мкФ.

Стабилитрон Д1 - он задает верхний предел регулировки выходного напряжения. На схеме мы видим надпись Д814Д х 2 , это значит, что Д1 состоит из двух последовательно соединенных стабилитронов Д814Д. Напряжение стабилизации одного такого стабилитрона составляет 13 Вольт, значит два последовательно соединенных дадут нам верхний предел регулировки напряжения 26 вольт минус падение напряжения на переходе транзистора Т1. В результате вы получите плавную регулировку от нуля до 25 вольт.
В качестве регулирующего транзистора в схеме применен КТ819, они выпускаются в пластиковых и металлических корпусах. Расположение выводов, размеры корпусов и параметры этого транзистора смотрите на следующих двух изображениях.

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама