THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм воспринимает давление газов при такте сгорание - расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Кривошипно-шатунный. Механизм состоит из блока цилиндров с картером, головки цилиндров, поршней с кольцами, поршневых пальцев, шатунов, коленчатого вала, маховика и поддона картера.

Рис. 2.12. Кривошипно-шатунный механизм двигателя СМД-14БН:

Венец маховика; 2 - пальцы ведущие; 3 - маховик; 4 - поршень; 5 - палец; 6 - кольцо стопорное; 7 - шатун; 8, 12 - соответственно верхний и нижний вкладыши шатуна; 9 - коленчатый вал; 10 - блок шестерен; 11 - крышка шатуна; 13 - винт.

кривошипный механизм коленчатый ремонт

Кривошипно-шатунный механизм состоит из следующих деталей: поршней с кольцами и пальцами, шатунов, коленчатого вала и маховика. Поршни размещены в цилиндрах, которые установлены в блок-картере, закрытым сверху головкой цилиндров.

Блок-картер является главной корпусной деталью двигателя, которую выполняют в виде общей отливки из чугуна. Верхнюю часть, где расположены все цилиндры, называют блоком цилиндров, а нижнюю уширенную часть, где расположен коленчатый вал, называют картером. Внутри картера имеются перегородки, которые придают ему жесткость, а также служат опорами для коленчатого вала. Нижние части перегородок, передняя и задняя пенки блок-картера имеют специальные приливы, которые совместно с крышками образуют постели для вкладышей коренных Подшипников коленчатого вала. Крышки коренных подшипников надежно закреплены в картере.

К передней обработанной стенке блок-картера прикреплен картер распределительных шестерен с крышкой, а к задней стенке - картер маховика. К нижней части блок-картера крепится при помощи болтов стальной штампованный поддон, служащий емкостью для масла.

В вертикальных цилиндрических расточках блок-картера установлены гильзы цилиндров, выполненные из высокопрочного чугуна. Пространство между стенками блока цилиндров и наружными стенками цилиндров заполняют охлаждающей жидкостью. Для исключения ее проникновения в картер гильзы в нижней части уплотнены резиновыми кольцами, которые размещены в специальных канавках.

Гильзы, омываемые охлаждающей жидкостью, называют мокрыми. Кроме резиновых колец герметичность посадки мокрых гильз в верхней части обеспечивается за счет плотной посадки специально обработанного буртика и пояска гильзы. Иногда под буртик гильзы устанавливают уплотнительное кольцо из мягкого металла.

Верхний торец гильзы несколько выступает над плоскостью блока цилиндров, что при затяжке головки цилиндров обеспечивает надежную фиксацию гильзы в гнезде и тщательное уплотнение стыка.

В верхней плите блока, кроме расточек для гильз цилиндров, выполнены:

специальные каналы для прохода охлаждающей жидкости из блока цилиндров в головку цилиндров;

канал для подвода масла к клапанному механизму;

отверстия для штанг толкателей;

отверстия с резьбой для шпилек крепления головки цилиндров к блоку цилиндров.

Цилиндры двигателя ЯМЗ-2Э8НБ расположены в два ряда под углом 90°, правый ряд смещен относительно левого на 35 мм. Каждый ряд цилиндров имеет отдельную головку.

Двигатель трактора ТДТ-55А имеет одну головку цилиндров, а двигатель трактора ТТ-4 - две. Сверху головки цилиндров закрыты колпаками из алюминиевого сплава. Головки цилиндров и блок - картера обоих двигателей имеют аналогичное устройство.

Стык головки цилиндров и блока цилиндров уплотняется специальной прокладкой, которая обеспечивает надежную герметичность соединения головки с блоком, препятствуя прорыву газов из цилиндров и протеканию охлаждающей жидкости из рубашки для охлаждающей жидкости. Внутренняя полость головки является рубашкой для охлаждающей жидкости, которая через отверстия, расположенные в нижней полости головки и на прокладке, сообщается с рубашкой для охлаждающей жидкости блока цилиндров.

В головке цилиндров имеются отверстия для установки форсунок для подачи топлива в камеру сгорания. Каждую форсунку дизельного двигателя трактора ТДТ-55А крепят двумя шпильками, а двигателей тракторов ТТ-4 и К-703 - специальным болтом с гайкой и скобой. Сверху на головке цилиндров расположены клапанный и декомпрессионный механизмы управления клапанами.

Головку цилиндров тракторных двигателей отливают из чугуна. В головке карбюраторных двигателей имеются отверстия для установки свечей зажигания. В головке пускового двигателя П-10УД имеется отверстие, перекрываемое крышкой, для продувки цилиндра при пуске или заливки в него топлива. Крепят головки цилиндров к блоку цилиндров шпильками и гайками, которые затягивают в определенной последовательности и с определенным моментом.

У всех рассматриваемых дизельных двигателей тракторов камера сгорания образуется соответствующими углублениями в поршне и верхними плоскостями головок цилиндров. Цилиндры вместе с камерами сгорания, поршнем и головкой цилиндров образуют объемы, в которых протекают все рабочие процессы рабочего цикла двигателя. Внутренние стенки гильз цилиндров, называемые зеркалом цилиндра, обеспечивают направление движения поршней.

Поршневая группа и шатун

Поршень с уплотнительными кольцами, пальцем и деталями крепления составляет поршневую группу. Поршень с уплотнительными кольцами обеспечивает герметичность переменного объема, в котором протекает рабочий процесс двигателя, а также воспринимает давление газов и передает возникающее усилие через палец и шатун коленчатому валу. При помощи поршня также осуществляется заполнение цилиндра горючей смесью или воздухом, сжатие ее и удаление из цилиндра отработавших газов. Кроме того, у двухтактных двигателей поршень открывает окна впускного, выпускного и перепускного каналов. Поршень работает в условиях больших давлений, высоких температур и быстро меняющихся скоростей движения.

Поршень состоит из верхней уплотняющей части (головки) и нижней направляющей части (юбки). Головка поршня имеет днище, воспринимающее давление газов, и боковую поверхность с проточенными на ней канавками для поршневых колец: на нижней части поршней дизельных двигателей протачивают канавки для размещения в них маслосъемных колец; на поршнях карбюраторных двигателей канавки для колец в нижней части не делают.

Для лучшего отвода теплоты и увеличения прочности поршня днище с внутренней стороны имеет ребра жесткости. Снаружи днище может быть плоским, вогнутым, выпуклым, фасонным.

В дизельных двигателях широко применяют фасонные днища, форма которых зависит от способа смесеобразования в дизеле, расположения клапанов и форсунок, а поверхность образует камеру сгорания. Поршни двигателей трелевочных тракторов имеют вогнутые фасонные камеры сгорания.

На уплотнительной части головки поршней дизелей тракторов ТДТ-55А, ТТ-4 и К-703 выполнены четыре кольцевые канавки: три верхние - для компрессионных колец и одна - для маслосъемного. На юбке поршня выполнена пятая канавка под нижнее маслосъемное кольцо. В канавках под маслосъемные кольца просверлены отверстия для отвода масла, снимаемого кольцами со стенок цилиндра, в поддон картера.

Боковая поверхность поршня имеет сложную конусовидно-эллиптическую форму, а диаметр его меньше диаметра цилиндра, причем у головки поршня диаметр меньше, чем у юбки, а большая ось эллипса перпендикулярна оси поршневого кольца. Все это позволяет при нагреве и расширении поршня обеспечивать между стенками цилиндра и поршнем зазор, который дает возможность поршню при нагревании свободно расширяться и перемещаться в цилиндре.

Юбка обеспечивает направление движения поршня в цилиндре и передает на его стенки боковые усилия. В верхней части юбка снабжена приливами-бобыщками, в которых выполнены отверстия для поршневого пальца, соединяющего поршень с шатуном. Ось пальца пересекается с осью поршня, но иногда она смещается от оси поршня. Это позволяет уменьшить нагрузку на поршень в момент перехода им ВМТ. Для улучшения приработки поршней к цилиндрам, уменьшения износа и предохранения их от задиров юбку поршня покрывают тонким слоем олова. Сам поршень отливается из специального алюминиевого сплава.

Поршневые кольца подразделяют на компрессионные и маслосъемные. Они предназначены для исключения прорыва газон между стенками цилиндра и поршня, попадания масла из картера в камеру сгорания, где, сгорая, масло образует нагар. Кольца участвуют в отводе тепла от поршня к цилиндру. В свободном состоянии наружный диаметр кольца больше диаметра цилиндра, поэтому после его установки кольцо плотно прилегает к стенкам цилиндра.

Для установки в канавки поршня кольца выполняют разрезными с зазором 0,2 - 0,5 мм. Разрезы поршневых колец называю замками, которые по форме бывают в основном прямыми, иногда косыми или ступенчатыми. На дизельных двигателях трелевочных тракторов применяют поршневые кольца с прямыми замками. При установке колец замки соседних колец смещают относительно друг друга по окружности приблизительно на угол 120°.

В процессе работы и износа у поршневых колец снижается упругость, и как следствие, ухудшается герметичность цилиндра. Для устранения этого в дизелях тракторов ТДТ-55А и ТТ-4 между поршневым маслосъемным кольцом и стенкой канавки поршня устанавливают стальное пружинящее кольцо - расширитель.

Поршневые кольца изготовляют из легированного чугуна отливкой с после дующей механической обработкой, а так же из стали. Высота колец меньше высоты канавки в поршне на 0,03 - 0,08 мм.

Материал для изготовления поршневых колец должен обладать хорошей упругостью и достаточной прочностью в условиях высоких температур, иметь высокую износоустойчивость, но не больше износоустойчивости зеркала цилиндра. Опорную поверхность одного или двух верхних компрессионных поршневых колец для уменьшения износа кольца и цилиндра покрывают слоем хрома толщиной до 0,16 - 0,20 мм с пористой поверхностью, хорошо удерживающей смазку. Для улучшения приработки рабочие поверхности нижних колец нередко покрывают слоем олова или другого легкоистираемого материала.

Поршневой палец служит для шарнирного соединения поршня с шатуном и изготовляется пустотелым из высококачественной износоустойчивой стали. Внутренняя его поверхность цилиндрическая или коническо-цилиндрическая.

Концы пальца размещают в отверстиях бобышек поршня, а середина проходит через отверстие в головке шатуна. Если пальцы свободно поворачиваются и в бобышках, и в головке шатуна, то они называются плавающими. Такое соединение имеет наибольшее распространение, поскольку при перемещении поршня с шатуном вся поверхность плавающего пальца является рабочей, что уменьшает износ и возможность заедания.

В некоторых двигателях палец может неподвижно закрепляться и головке шатуна и длина его меньше диаметра поршня. Для ограничения осевых перемещений пальца и исключения повреждений стенок цилиндра палец закрепляют стопорными кольцами, устанавливаемыми в канавки бобышек торцевыми заглушками, вставляемыми в бобышки и стопорным кольцом, размещенным в проточках пальца и верхней головки шатуна.

Смазку поршневого пальца осуществляют через сверления в стержне или прорези в верхней головке шатуна и масляные каналы в бобышках поршня.

Шатун состоит из верхней и нижней головки и соединяющего их стержня:

верхняя головка неразъемная и служит для установки поршневого пальца, шарнирно соединяющего поршень с шатуном. Для уменьшения трения и износа в нее запрессовывают одну или две бронзовые втулки;

нижняя головка у многих двигателей выполняется составной с прямым (90°) или косым (30 - 60°) относительно оси стержня шатуна разъемом. Плоскость разъема может быть гладкой или иметь шлицевой замок. Косой разъем облегчает пропуск поршня с шатуном через цилиндр, а также соединение шатуна с кривошипом коленчатого вала.

Съемная часть нижней головки шатуна - крышка. Она крепится к стержню двумя болтами, которые имеют гайки или ввертываются в тело шатуна и надежно стопорятся после затяжки.

В нижней головке шатуна установлены стальные тонкостенные вкладыши (верхний и нижний), с тонким слоем 0,1 - 0,9 мм анфрикционного сплава. Вкладыши шатунных подшипников в дизельных двигателях тракторов ТДТ-55А и ТТ-4 изготовляют из малоуглеродистой стали, покрытой специальными алюминиевыми сплавами, а в двигателях трактора К-703 - свинцовистой бронзой. Вкладыши выполняют функцию подшипника скольжения и удерживаются в шатуне и в крышке плотной посадкой и наличием у них усиков, входящих в соответствующие выточки в шатуне и крышке.

Стержень шатуна имеет обычно двутавровое сечение, расширяющееся к нижней головке, обтекаемую форму и плавные переходы к головкам. У некоторых шатунов в стержне выполняют канал для подвода под давлением масла к поршневому пальцу.

При работе двигателя на шатун действуют силы давления газов и силы инерции, которые сжимают, растягивают и изгибают шатун в продольном и поперечном направлениях. Поэтому его форма, конструкция и материал должны обеспечивать прочность, жесткость и легкость. Шатуны изготовляют из высококачественных углеродистых и легированных сталей штамповкой нагретых заготовок с последующей механической и термической обработкой.

Для обеспечения хорошей уравновешенности двигателя различие в массе отдельных шатунов и комплектов шатунно-поршневой группы должно быть минимальным. Для правильной сборки поршня с шатуном и установки их в двигатель на нижней головке шатуна и ее крышке выбивают порядковый номер цилиндра, для которого предназначен шатун, а также другие метки.

Коленчатый вал и маховик

Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, передавая его приводным системам и механизмам двигателя и трансмиссии трактора. В процессе работы коленчатый вал находится в очень сложном напряженном состоянии: на него действуют сжимающие и растягивающие усилия, инерционные и центробежные силы, скручивающие и изгибающие моменты. Коленчатый вал должен быть: прочным, жестким, износоустойчивым, статически и динамически уравновешенным, обтекаемым, не подвергаться резонансным и крутильным колебаниям, иметь небольшую массу.

Коленчатый вал состоит из коренных и шатунных шеек, соединенных щеками, фланца для крепления маховика и носка.

Шатунные шейки вала дизелей тракторов ТДТ-55А, ТТ-4 и К-703 имеют полости, закрытые резьбовыми пробками, в которых осуществляется дополнительная центробежная очистка масла перед поступлением в шатунные подшипники.

Коренные шейки служат для установки коленчатого вала в подшипниках, размещенных в картере двигателя. При помощи шатунных шеек вал соединяется с нижними головками шатунов. Шатунные и коренные шейки соединяют при помощи щек. Для разгрузки коренных подшипников от инерционных сил движущихся деталей шатунно-поршневой группы на щеках вала установлены противовесы, в сборе с которыми вал балансируется. Противовесы могут изготовляться заодно со щеками или в виде отдельных, надежно закрепленных деталей. Шатунная шейка вместе с прилегающими к ней щеками образует колено вала или кривошип.

Для избежания разрушения коленчатых валов в местах перехода щек к коренным и шатунным шейкам выполняют закругления - галтели. В коренных и шатунных шейках и в щеках просверлены каналы для подачи под давлением масла к шатунным подшипникам.

На передней части коленчатого вала крепятся: шестерня привода распределительного вала, шкив приводных ремней, маслоотражатель, сальник и храповик для проворачивания вала рукояткой. К хвостовику коленчатого вала болтами крепится маховик. На хвостовике вала имеется маслосъемная резьба и маслоотражательный буртик, а в торце имеется гнездо для установки переднего подшипника вала муфты сцепления.

Носик и хвостовик вала уплотняются резиновыми самоподжимными манжетами. Коленчатый вал вращается в коренных подшипниках, имеющих вкладыши из сталеалюминевой ленты.

Изготовляют коленчатые валы из углеродистых и легированных сталей штамповкой или литьем с последующей механической и термической обработкой. Для повышения износоустойчивости коренных и шатунных шеек их подвергают поверхностной закалке, а затем шлифуют и полируют.

Форма коленчатого вала зависит от числа и расположения цилиндров, тактности и порядка работы двигателя. Она должна обеспечивать равномерное чередование рабочих ходов в цилиндрах по углу поворота коленчатого вала, принятую последовательность работы цилиндров и уравновешенность двигателя.

Число шатунных шеек на коленчатом валу двигателя с однорядным расположением цилиндров равно числу цилиндров. У двигателей с V-образным расположением цилиндров число шатунных шеек равно половине числа цилиндров: у этих двигателей на каждой шейке рядом установлены головки двух шатунов. Число коренных шеек коленчатого вала у v-образных двигателей обычно на одну больше, чем у шатунных. Например, восьмицилиндровый дизельный двигатель ЯМЗ-2Э8НБ имеет пять коренных шеек, а коленчатый вал шестицилиндрового дизеля А-01МЛ - семь коренных шеек. Чем больше опор в виде коренных шеек имеет коленчатый вал, тем более жесткой и надежной получается конструкция двигателя, облегчается нагрузка на опорные подшипники, но при этом усложняется устройство вала и картера, увеличивается длина двигателя, возрастает стоимость изготовления и ремонта.

Вкладыши коренных подшипников устанавливают в постели блок-картера и крышки коренных подшипников, а фиксацию осуществляют таким же способом, как и шатунных.

При рабочем ходе в одноцилиндровом двигателе коленчатый вал с маховиком воспринимает усилие от поршня через шатун и раскручивается, накапливая энергию, которая затем, прежде всего, используется на выполнение остальных подготовительных тактов рабочего процесса. По мере увеличения в двигателе числа цилиндров и частоты рабочих тактов (у двухтактных двигателях) сокращается потребность в энергии маховика для выполнения подготовительных тактов. Поэтому размеры маховика и его масса у таких двигателей меньше.

При пуске двигателя маховик, получив энергию после рабочего хода в одном из цилиндров, обеспечивает за счет инерции вращение коленчатого вала, при этом в остальных цилиндрах создаются условия для протекания рабочих ходов, в результате чего двигатель начинает работать.

Маховик отливают из чугуна в виде диска. Для увеличения момента инерции маховика основную массу его металла располагают по ободу, т.е. на максимальном расстоянии от оси вращения маховика. На обод маховика напрессовывают стальной зубчатый венец, с которым при пуске двигателя входит в зацепление шестерня пускового устройства, и наносят метки для определения положения поршня в первом цилиндре и установки момента зажигания или момента подачи топлива.

В сборе с коленчатым валом маховик балансируется. Это выполняют для того, чтобы при их вращении не возникало вибрации и биения от центробежных сил и не происходил усиленный износ коренных подшипников двигателя. На заднем торце маховика монтируют сцепления.

При работе двигателя на коленчатый вал действуют осевые усилия от работы косозубых шестерен привода газораспределения, включения муфты сцепления и нагрева вала. Чтобы ограничить осевые перемещения коленчатого вала, один из коренных подшипников (задний, передний или средний) выполняют упорным. Для этого вкладыши таких подшипников снабжаются отбортовкой, упорными кольцами или полукольцами. От осевых перемещений коленчатый вал дизельных двигателей тракторов ТДТ-55А, ТТ-4 и К-703 фиксируется четырьмя полукольцами, которые устанавливаются в выточках среднего (СМД-14БН) или заднего коренного подшипника.

Техническое обслуживание кривошипно-шатунного механизма

Детали кривошипно-шатунного механизма во время работы сильно нагреваются и воспринимают переменные нагрузки большой величины, поэтому для обеспечения длительной работы двигателя в исправном состоянии необходимо выполнять следующие рекомендации:

новый или отремонтированный двигатель необходимо подвергать обкатке;

пуск двигателя при температуре окружающей среды ниже -5°С следует производить при помощи предпускового подогревателя или только после предварительного прогрева водой;

не давать двигателю полной нагрузки, пока он не прогреется;

не перегружать двигатель длительное время и не допускать во время работы ненормальных стуков и дымления;

поддерживать температуру охлаждающей жидкости в пределах 82 - 85°С;

не допускать длительной работы на холостом ходу.

Основными внешними признаками неисправности кривошипно-шатунного механизма являются: повышенный расход масла, дымный выхлоп отработавших газов и ненормальные стуки. Все это происходит в результате износа деталей и увеличения зазоров в сопряжениях, что вызывает падение давления масла в магистрали. Прежде чем проверять зазор в подшипниках, следует убедиться в правильности показаний манометра, проверить загрязненность фильтров и состояние других элементов системы смазки. Предварительная оценка состояния подшипников коленчатого вала по давлению масла в масляной магистрали производится приспособлением КИ-4940: номинальное давление прогретого двигателя до нормального теплового состояния при номинальной частоте вращения должно быть 250 - 350 кПа (2,5 - 3,5 кгс/см2), а предельно допустимое 100 кПа (1,0 кгс/см2). Падение давления масла в магистрали ниже предельно допустимого является одной из причин износа шеек коленчатого вала и подшипников. Допустимый зазор в шатунных и коренных подшипниках коленчатого вала должен быть 0,3 мм.

Зазоры в подшипниках можно проверить следующим способом. После слива масла и снятия поддона необходимо ослабить гайки крепления крышек коренных и шатунных подшипников, и снять крышку проверяемого подшипника вместе с нижним вкладышем. Затем положить на него вдоль оси коленчатого вала прокладку из латуни размером 25x13x0,3 мм, т.е. толщиной, равной максимально допустимому зазору, поставить крышку на место и затянуть гайки. Затяжку производят при помощи динамометрического ключа. Гайки шатунных болтов следует стопорить новыми шплинтами. Момент затяжки гаек коренных подшипников составляет 200 - 220 Н м (20 - 22 кгс-м), а шатунных 150 - 180 Н м (15 - 18 кгс-м).

Затем проверяют возможность вращения коленчатого вала, предварительно включив декомпрессионный механизм. Если вал будет вращаться свободно, то зазор в подшипнике превышает допустимое значение.

Увеличение зазора между деталями цилиндро-поршневой группы приводит к падению мощности двигателя, повышенному угару масла и выделению газов из сапуна. Чтобы оценить состояние цилиндропоршневой группы, можно воспользоваться различными способами, но наиболее простыми являются такие, которые позволяют определить техническое состояние деталей без разборки двигателя. К этим способам относятся: определение компрессии в цилиндрах двигателя при помощи компрессиметра КИ-861 или технического состояния цилиндропоршневой группы по утечке газов в картер двигателя при помощи индикатора расхода газов КИ-4887-1.

Окончательное решение о техническом состоянии цилиндропоршневой группы можно принять только после частичной разборки двигателя с замером зазоров между отдельными сопряженными деталями. Например, предельные зазоры между основными деталями цилиндропоршневой группы, по которым оценивают техническое состояние двигателя А-ОЗМЛ, равны:

зазор между юбкой поршня и гильзой цилиндра в верхнем рабочем пояске - 0,60 мм;

зазор между остальными кольцами - 0,40 мм; зазор в стыке компрессионного кольца - 6,00 мм; зазор в стыке маслосъемного кольца - 3,00 мм; зазор между бобышками поршня и пальцем - 0,10 мм; зазор между верхней головкой шатуна и пальцем - 0,30 мм; выступание гильзы цилиндра относительно плоскости блока - 0,165 мм.

Для установки поршневых пальцев поршни перед сборкой нагревают в масле до температуры 80 - 100°С. Поршневые кольца подбирают по гильзе, а затем по канавкам в поршне. Для проверки зазора в замке кольца его устанавливают в гильзу при помощи Поршня на глубину 25 мм от верхнего торца. Подгонка зазора в замке осуществляется при помощи личного напильника, а под гонка кольца по канавкам в поршне по высоте осуществляется притиркой на чугунной плите.

Гильзы цилиндров меняют на новые, если их износ в верхней зоне первого компрессионного кольца превышает 0,60 мм. Поршни заменяют, если зазор между канавкой и новым компрессионным кольцом по высоте превышает 0,50 мм. Затяжку гаек на шпильках при креплении головки цилиндров двигателя производят в определенной последовательности, момент составляет 200 - 220 Н м (20 - 22 кгс-м)

Устройство кривошипно-шатунного механизма предназначается для преобразования возвратно-поступательного движения поршня в движение вращательное, которое может выступать в роли движения коленчатого вала в двигателе внутреннего сгорания автомобиля, и наоборот.

Детали кривошипно-шатунного механизма делятся условно на две группы, к которым относятся: подвижные детали и неподвижные детали. Подвижные детали это: поршень вместе с , устройство коленчатого вала с подшипниками, шатун, поршневой палец, маховик и кривошип. К неподвижным деталям относятся: блок цилиндров, которые являют собою базисные детали двигателя внутреннего сгорания (являет собою единую отливку с картером); картер сцепления и маховика, головка цилиндров, нижний картер, крышки блока, гильзы цилиндров, прокладки крышек блока, крепежные детали, полукольца коленчатого вала, кронштейны.

1. Назначение и характеристика шатунного механизма.

Устройство кривошипно-шатунного механизма является основным устройством поршневого двигателя внутреннего сгорания. Данная система предназначается для восприятия давления газов при определенном такте рабочего хода. Кроме того, данный механизм позволяет преобразовывать движения поршней возвратно-поступательного характера во вращательные движения коленчатого вала автомобиля.

Стандартное данное устройство состоит из поршней, которые имеют поршневые кольца, гильз и головок цилиндров, блок-картера, шатунов, коленчатого вала, маховика, шатунных и коренных подшипников. В моменты непосредственной работы двигателя внутреннего сгорания прямое воздействие на детали кривошипно-шатунного механизма имеют силы инерции возвратно-поступательно движущихся масс, давление газов, инерции разного рода неуравновешенных вращающихся масс, трения и тяжести.

Все вышеуказанные силы, кроме, конечно же, силы тяжести, воздействуют на изменение значения и направления всех рассматриваемых величин. Все это напрямую зависит от угла поворота устройства коленчатого вала и процессов, которые происходят уже непосредственно в цилиндрах двигателя внутреннего сгорания.

2. Конструкция шатунного механизма.

Поскольку все составные кривошипно-шатунного механизма уже известны, стоит приступить к рассмотрению устройства коленвала. Коленчатый вал являет собою один из основных элементов двигателя внутреннего сгорания, который наряду с другими деталями цилиндропоршневой группы определяет ресурс самого мотора.

Так, ресурс устройства будет характеризоваться несколькими показателями: износостойкостью и усталостной прочностью. Коленвал принимает на себя все усилия, которые действуют на поршни, с помощью шатунов. После этого коленчатый вал передает все эти усилия на механизм трансмиссии. Уже от него будут приводиться в действие разного рода механизмы двигателя внутреннего сгорания. Устройство коленчатого вала состоит из: коренных шеек, шатунных шеек, связывающих щек, хвостовика и носка.

3. Неисправности шатунного механизма.

При непосредственной работе двигателя внутреннего сгорания в результате действия непостоянных и чересчур высоких динамических нагрузок, от сил инерции движущихся и вращающихся частей, от давления газов вал подвергается изгибу и кручению, а отдельные поверхности устройства просто изнашиваются.

Все усталостные повреждения накапливаются непосредственно в структуре металла, вследствие чего возникают микротрещины и различного рода дефекты. Определение износа элементов проводится посредством использования универсального и специального мерительного инструмента. Для того, чтобы обнаружить трещины нужно использовать магнитный дефектоскоп. При постоянной эксплуатации коленчатого вала он подвергается возникновению дефектов.

Самым распространенным является дефект износа. Но износу подвергается множество деталей всего устройства. При износе коренных шеек и шатунных, овальности и конусности нужно производить шлифование под необходимый для ремонта размер. Нанесение наплавкой покрытий, электроконтактной приваркой ленты, металлизацией, наполнением поверхности порошковыми материалами – решение данной проблемы.

Кроме того, рекомендуется установить новые полукольца и провести процедуру пластинирования. Кроме того износ может коснуться посадочных мест, которые нужны для распределительной шестерни, шкива и маховика. Износ касается и маслогонной резьбы, поверхности фланца для маховика, штифта для маховика, шпоночных канавок. Для того, чтобы решить все вышеуказанные проблемы не потребуется много ресурсов и времени.

Для первой проблемы нужно произвести обычную металлизацию, наплавку или электронную приварку ленты. Проблема с резьбой решается обыкновенным углублением резьбы резцом до нормализированного профиля. Штифты нужно попросту заменить, а вот для канавок нужно произвести фрезерование под увеличенный размер шпонок и для новых шпоночных канавок. После этого нужно сделать наплавку и проблема пропадет.

Помимо этого износ может коснуться и посадочного места для наружных колец в торце вала, отверстий под штифты, крепления маховика и резьбы. Везде нужно производить растачивание посадочных мест и запрессовку втулки. Кроме того для штифтов нужно произвести развертывание для ремонтного размера и заварку. Для резьбы также нужно произвести зенкерование или растачивание с увеличением резьбы в последующем процессе. Также делается и углубление всех резьбовых отверстий.

Помимо износа проблемы возникают и со скручиванием вала, вследствие чего происходит нарушение расположения кривошипов. В данном случае нужно сделать шлифование шеек под особый ремонтный размер и наплавить шейки с последующей обработкой. Самой проблематичным могут быть трещины в шейках вала, так как помимо их шлифования под ремонтный размер, нужно будет произвести разделку трещин посредством абразивного инструмента. В принципе, этого вполне достаточно для автомобилиста, так как другие проблемы и неисправности могут требовать профессионального вмешательства со стороны.

4. Обслуживание шатунного механизма.

Правильное обслуживание двигателя внутреннего сгорания и его нормальная эксплуатация будут обеспечивать минимальный износ всех его деталей и его бесперебойную работу. Кроме того, кривошипно-шатунный механизм не будет нуждаться в ремонте достаточно длительное время.

Для того, чтобы обеспечить нормализированные условия работы всех конструктивных составных кривошипно-шатунного механизма в период его эксплуатации категорически НЕ допускается следующее:

- продолжительная работа при перегрузке двигателя;

Эксплуатация двигателя в условиях пониженного давления масла;

Эксплуатация двигателя при сильно низкой картерной температуре масла;

Продолжительная работа мотора на холостом ходу, которая будет вызывать закоксовывание поршневых колец;

Работа мотора, в котором отсутствует кожух вентилятора или он есть, но его прилегание является неплотным к привалочной поверхности;

Работа двигателя, где отсутствует воздухоочиститель, или он является в неисправном состоянии;

Перебойная работа двигателя, сопровождающаяся дымным выхлопом и стуками.

При непосредственной разборке устройства двигателя внутреннего сгорания для его ремонта следует производить очистку полостей шатунных шеек механизма коленчатого вала. Для того, чтобы полностью очистить все полости, нужно вытащить шплинты и вывернуть резьбовые пробки. От того, насколько все правила технического обслуживания системы смазки и от того, насколько правильно хранится масло и заправляется в двигатель, будет зависеть эффективная составная центробежной очистки масла из полостей шатунных шеек.

Если же рекомендуемые правила не будут соблюдены, то полости шатунных шеек достаточно быстро наполнятся различными отложениями, а очистка масла вообще канет в небытие. Если же очень сильно снизилась мощность, дымление и выход газов являются достаточно сильными, запуск двигателя является трудным, возникновении ненормальных стуков, которые связаны с неисправностью кривошипно-шатунного механизма, следует незамедлительно «влезать» в устройство и его осматривать. Разборку двигателя внутреннего сгорания следует производить в закрытом помещении.

Основные размеры КШМ ВАЗ 2110, 2111, 2112

себя двигателя ВАЗ 2110, они имеют много

взаимозаменяемых деталей КШМ с двигателями

ВАЗ 2108, ВАЗ 2109

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала .

Устройство КШМ можно разделить на две группы: подвижные и .

Подвижные детали :

Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси.

Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел " ".

Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр, чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения , состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).

Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.

2. Неисправности КШМ двигателя

Материал из Энциклопедия журнала "За рулем"

В одноцилиндровом четырехтактном двигателе на каждые два оборота коленчатого вала приходится четыре хода поршня, только один из которых - рабочий. Это приводит к неравномерной работе двигателя. Для небольших двигателей, таких? Как легкие лодочные моторы, двигатели мопедов, легких мотоциклов и т. д., такая неравномерность не представляет большой проблемы. Для более тяжелых автомобилей требуется большая мощность двигателя, а, следовательно, и больший рабочий объем цилиндра. В этом случае неравномерность работы двигателя становится более заметной. Вот почему на современных автомобилях применяются многоцилиндровые ДВС. Применение нескольких цилиндров, в которых рабочий ход происходит в разные моменты времени, дает возможность сгладить пульсации крутящего момента на вале двигателя. Большинство легковых автомобилей малого класса имеют четырехцилиндровые двигатели, хотя иногда используются двухцилиндровые и трехцилиндровые. На более тяжелых автомобилях, требующих большой мощности, наряду с четырехцилиндровыми, могут применяться пятицилиндровые и шестицилиндровые двигатели. Легковые автомобили высшего класса оборудуются восьмицилиндровыми и двенадцатицилиндровыми двигателями, хотя встречаются двигатели с десятью цилиндрами. Большинство грузовых автомобилей средней и большой грузоподъемности имеют двигатели с шестью и восемью цилиндрами.

Неподвижные детали кривошипно-шатунного механизма

Кривошипно-шатунный механизм многоцилиндрового двигателя состоит из подвижных и неподвижных деталей.
К подвижным деталям КШМ относятся: поршень , поршневые кольца , поршневой палец , шатун , коленчатый вал , вкладыш подшипника и маховик . Неподвижными деталями КШМ являются: блок цилиндров , головка блока цилиндров и прокладка головки блока.
Кривошипно-шатунный механизм воспринимает давление газов, возникающих при сгорании топлива в цилиндрах двигателя, и преобразует это давление в механическую работу по вращению коленчатого вала.



Схемы расположения цилиндров в двигателях различной компоновки :
а - рядный четырехцилиндровый;
б - V-образный шестицилиндровый;
в - оппозитный четырехцилиндровый;
г - VR-двигатель шестицилиндровый;
д и е - W-образные 12-цилиндровые двигатели;
α - угол развала

Расположение цилиндров в блоке определяет компоновочную схему двигателя. Если оси цилиндров расположены в одной плоскости, то такие двигатели называют рядными.
Рядные двигатели устанавливаются на автомобиле или вертикально, или под углом к вертикальной плоскости для уменьшения высоты, занимаемой двигателем, а в некоторых случаях - горизонтально, например при размещении под полом автобуса. В V-образных двигателях оси цилиндров находятся в двух плоскостях, расположенных под углом друг к другу. Угол между осями цилиндров может быть различным. Разновидностью такого двигателя можно считать двигатель с так называемыми оппозитными (противолежащими) цилиндрами (в некоторых странах такую компоновку называют «boxer»), у которого этот угол составляет 180°. Сравнительно недавно появился двигатель W12, разработанный группой компаний Volkswagen , схема которого представляет собой как бы два V-образных двигателя с разными углами между осями цилиндров, имеющими общий коленчатый вал.



Двигатель W12, устанавливаемый на AudiA8 с 2001г., практически состоит из двух двигателей V6 с различными углами развала цилиндров, использующих общий коленчатый вал


Базовые понятия КШМ ДВС - это диаметр цилиндра и ход поршня. Диаметр цилиндра - это диаметр отверстия, под поршень , выполненного в блоке цилиндров .. Ход поршня - расстояние между ВМТ и НМТ . Диаметр цилиндра и ход поршня принято измерять в миллиметрах, а объем двигателя – в литрах. Понятно, что два двигателя одинакового объема могут иметь различное число цилиндров и различную компоновку.

Если диаметр цилиндра больше хода поршня, то такой двигатель называют короткоходным . Данные двигатели развивают более высокие максимальные обороты коленчатого вала, и в них упрощается размещение впускных и выпускных клапанов, что дает возможность получения высокой мощности. Если ход поршня превышает диаметр цилиндра, то двигатель считается длинноходным . Такие двигатели, как правило, более экономичны и характеризуются большими значениями крутящего момента. Длинноходные двигатели имеют большую высоту, но короче по длине.
При разработке конструкции двигателя приходится решать вопрос о выборе величины объема отдельного цилиндра. Если объем цилиндра сделать очень маленьким, то он будет плохо заполняться топливно-воздушной смесью, и мощность такого двигателя будет низкой. В то же время нельзя безгранично увеличивать объем цилиндра, потому что при этом фронт распространения пламени может не успеть дойти до стенок цилиндра за то короткое время, которое отводится на рабочий ход, а это приведет к уменьшению давления в цилиндре и скажется на уменьшении мощностных показателей двигателя .
В современных автомобильных двигателях объем отдельного цилиндра редко превышает 0,8л, а в большинстве двигателей составляет около 0,5л.
Чем большее число цилиндров имеет двигатель, тем равномернее он работает. Пульсации, возникающие при работе ДВС, могут быть уменьшены применением массивного маховика, устанавливаемого на конце коленчатого вала. Чем меньше цилиндров имеет двигатель, тем большей массой должен обладать маховик. В то же время массивный маховик из-за своей инерционности ухудшает способность двигателя быстро набирать обороты. Поэтому конструкторам двигателей приходится принимать компромиссные решения.

Если есть что-то, что прочно ассоциируется с любым автомобилем, это механизм двигателя. Как ни странно, принцип его действия мало изменился с тех пор, как 120 лет назад Карл Бенц запатентовал свой первый автомобиль. Система усложнялась, обрастала сложной электроникой, совершенствовалась, но кривошипно-шатунный механизм (КШМ) остался самым узнаваемым “портретом” любого мотора.

Что такое КШМ и для чего он нужен?

Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.

Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.


Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)
  1. Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
  2. Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
  3. Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
  4. Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.

Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.

Подвижная (рабочая) группа КШМ

Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.

  1. Поршень . При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива.


    Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)

  2. Шатун . Это соединительный элемент между поршнем и коленвалом. Верхней головкой шатун крепится к поршню с помощью пальца. Нижняя головка имеет съемную часть, так что шатун можно надеть на шейку коленвала. Для уменьшения трения между шейкой коленвала и головкой шатуна ставятся шатунные вкладыши – подшипники скольжения в виде двух пластин, изогнутых полукругом.


    Устройство шатуна

  3. Коленвал . Это центральная часть двигателя, без которой сложно представить себе его принцип работы. Основной его частью является ось вращения, которая одновременно служит опорой для коленвала в блоке цилиндров. Выступающие за ось вращения элементы предназначены для присоединения к шатунам: когда шатун движется вниз, коленвал позволяет ему описать нижней частью окружность одновременно с движением поршня. Так же, как и в случае с шатунами, опорные шейки коленвала лежат на подшипниках скольжения – вкладышах.


    Устройство коленвала

  4. Маховик . Он крепится к фланцу на торцевой части коленвала. Маховик вращается вместе с валом двигателя и частично демпфирует неизбежные в любом ДВС рывковые нагрузки. Но основная задача маховика – раскручивать коленвал (а с ним и цилиндро-поршневую группу), чтобы поршни не замерли в “мертвой точке”. Таким образом, часть мощности двигателя расходуется на поддержку вращения маховика.

Устройство маховика

Неподвижная группа КШМ

Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.

  1. Блок цилиндров . По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя.


    Блок цилиндров

  2. Головка блока цилиндров (ГБЦ). Устанавливается на блок цилиндров и закрывает его сверху. В ГБЦ предусмотрены отверстия для клапанов, впускного и выпускного коллекторов, крепления распредвала (одного или больше), крепления для других элементов двигателя. К ГБЦ, снизу, крепится прокладка (1) — пластина, которая герметизирует стык между блоком цилиндров и ГБЦ. В ней предусмотрены отверстия для цилиндров и крепежных болтов. А сверху — клапанная крышка (5), — ею закрывается ГБЦ сверху, когда двигатель собран и готов к запуску. Прокладка клапанной крышки. Это тонкая пластина, которая укладывается по периметру ГБЦ и герметизирует стык.

Устройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка клапанная; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

Принцип работы КШМ

Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.

Принцип работы КШМ:

  1. В цилиндрах двигателя сгорает распыленное и смешанное с воздухом топливо. Такая дисперсия предполагает не медленное горение, а мгновенное, благодаря чему воздух в цилиндре резко расширяется.
  2. Поршень, который в момент начала горения топлива находится в верхней точке, резко опускается вниз. Это прямолинейное движение поршня в цилиндре.
  3. Шатун соединен с поршнем и коленвалом так, что может двигаться (отклоняться) в одной плоскости. Поршень толкает шатун, который надет на шейку коленвала. Благодаря подвижному соединению, импульс от поршня через шатун передается на коленвал по касательной, то есть вал делает поворот.
  4. Поскольку все поршни по очереди толкают коленвал по тому же принципу, их возвратно-поступательное движение переходит во вращение коленвала.
  5. Маховик добавляет импульс вращения, когда поршень находится в «мертвых» точках.

Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.

Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.

Основные неисправности

Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.

Стук в двигателе.

Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.

Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.

Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.

Снижение мощности.
Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.

Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.

Повышенный расход масла.
Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.

Нагар.
Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.

Белый дым из выхлопной трубы.
Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.

Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твердую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.

Заключение

Несмотря на высокие нагрузки, критические условия работы и даже небрежность владельцев, кривошипно-шатунный механизм отличается завидной живучестью. Вывести его из строя можно неправильным обслуживанием, нештатными нагрузками, поломкой смежных элементов. Да, двигатель почти всегда можно починить, но эта услуга обойдется в разы дороже, чем просто грамотное регулярное ТО. Недаром же есть двигатели “миллионники”, которые способны служить десятилетиями, не доставляя проблем владельцу машины.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама