THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Были схемы на дискретных электронных элементах - резисторах, транзисторах, конденсаторах, диодах, индуктивностях, и они при работе нагревались. И их еще приходилось охлаждать - целая система вентиляции и охлаждения строилась. Нигде не было кондиционеров, люди жару терпели, а все машинные залы продувались и охлаждались централизованно и непрерывно, днями и ночами. И расход энергии шел на мегаватты. Блок питания компьютера занимал отдельный шкаф. 380 вольт, три фазы, подводка снизу, из-под фальшпола. Другой шкаф занимал процессор. Еще один - оперативная память на магнитных сердечниках. А все вместе занимало зал площадью около 100 квадратных метров. И машина имела оперативную память, страшно сказать, 512 КБ.

А надо было делать компьютеры все мощнее и мощнее.

Потом изобрели БИС - большие интегральные схемы. Это когда вся схема прорисована в одной твердотельной форме. Многослойный параллелепипед, в котором слои микроскопической толщины содержат нариcованные, напыленные или наплавленные в вакууме те же самые электронные элементы, только микроскопические, и «раздавленные» в плоскость. Обычно целая БИС герметизируется в одном корпусе, и тогда уж ничего не боится - железяка железякой, хоть молотком бей (шутка).

Только БИС (или СБИС - сверхбольшие интегральные схемы) содержат функциональные блоки или отдельные электронные устройства - процессоры, регистры, блоки полупроводниковой памяти, контроллеры, операционные усилители. И стоит задача их собрать уже в конкретное изделие: мобильный телефон, флешку, компьютер, навигатор и пр. Но они же такие маленькие, эти БОЛЬШИЕ интегральные схемы, как их собрать?

И тогда придумали технологию поверхностного монтажа.

Метод сборки комплексных электронных схем SMT/ТМП

Собирать на плату вперемешку микросхемы, БИСы, сопротивления, конденсаторы по старинке очень скоро стало неудобно и нетехнологично. И монтаж по традиционной «сквозной» технологии стал громоздким и трудно автоматизируемым, и результаты получались не в согласии с реалиями времени. Миниатюрные гаджеты требуют и миниатюрных, и, самое главное, удобных в компоновке плат. Промышленность уже может выпускать сопротивления, транзисторы и пр. совсем маленькими и совсем плоскими. Дело оставалось за малым - сделать плоскими, прижатыми к поверхность их контакты. И разработать технологию трассировки и изготовления плат как основы для поверхностного монтажа, а также методы пайки элементов к поверхности. Кроме прочих плюсов, пайку научились делать целиком - всю плату сразу, что ускоряет работу и дает однородность ее качества. Этот метод получил название «т ехнология м онтажа на п оверхность (ТМП)», или surface mount technology (SMT). Так как монтируемые элементы стали уж совсем плоскими, в обиходе они получили название «чипы», или «чип-компоненты» (или еще SMD - surface mounted device, например, SMD-резисторы).

Шаги изготовления платы по ТМП

Изготовление ТМП-платы затрагивает как процесс ее проектирования, изготовления, подбор определенных материалов, так и специфические технические средства для припаивания чипов на плату.

  1. Проектирование и изготовление платы - основа для монтажа. Вместо отверстий для сквозного монтажа делаются контактные площадки для припаивания плоских контактов элементов.
  2. Нанесение паяльной пасты на площадки. Это можно делать шприцем вручную или с помощью трафаретной печати при массовом изготовлении.
  3. Точная установка компонентов на плату поверх нанесенной паяльной пасты.
  4. Помещение платы со всеми компонентами в печь для пайки. Паста оплавляется и очень компактно (благодаря присадкам, увеличивающим поверхностное натяжение припоя) припаивает контакты с одинаковым качеством по всей поверхности платы. Однако критичны требования как ко времени операции, температуре, так и к точности химического состава материалов.
  5. Окончательная обработка: остывание, мойка, нанесение защитного слоя.

Различаются варианты технологии для серийного и для ручного производства. Массовое производство при условии широкой автоматизации и последующем контроле качества дает и гарантировано высокие результаты.

Однако SMT-технология может вполне уживаться и с традиционным монтажом на одной плате. В этом случае как раз и может быть востребован монтаж SMT вручную.

Резисторы SMD

Резистор - самый распространенный компонент электронных схем. Существует даже специально разработанная схемотехника, которая строится только из транзисторов и резисторов (T-R-логика). Это значит, без остальных элементов построить процессор можно, а вот без этих двух - никак. (Пардон, есть еще ТТ-логика, где вообще одни транзисторы, но некоторым из них приходится играть роль резисторов). Это в производстве больших интегральных схем доходят до таких крайностей, а для поверхностного монтажа все-таки выпускается весь набор необходимых элементов.

Для столь компактной сборки они должны обладать строго определенными размерами. Каждый SMD-прибор - это маленький параллелепипед с выступающими из него контактами - ножками, или пластинками, или металлическими наконечниками с двух сторон. Важно то, что контакты на монтажной стороне должны лежать строго в плоскости, и на этой плоскости иметь необходимую для пайки площадь - тоже прямоугольную.

Размеры резистора: l - длина, w - ширина, h - высота. За типоразмеры берутся важные для монтажа длина и ширина.

Они могут быть кодированы в одной из двух систем: дюймовой (JEDEC) или метрической (мм). Коэффициент пересчета из одной системы в другую - это длина дюйма с мм = 2,54.

Типоразмеры кодируются четырехзначным цифровым кодом, где первые две цифры - длина, вторые - ширина девайса. Причем размеры берутся или в сотых долях дюйма, или в десятых долях миллиметра, в зависимости от стандарта.

А код 1608 в метрической системе означает 1,6 мм длины и 0,8 мм ширины. Применив коэффициент пересчета, легко убедиться, что это один и тот же типоразмер. Однако существуют и другие измерения, которые определяются типоразмером.

Маркировка чип-резисторов, номиналы

Ввиду малой площади прибора для нанесения обычного для резисторов номинала пришлось изобретать специальную маркировку. Их бывает две чисто цифровые - трехцифровая и четырехцифровая) и две буквенно-цифровых (EIA-96), в которой две цифры и буква и кодировка для значений сопротивления меньше 0, в которой используется буква R для указания положения десятичной точки.

И есть еще одна особая маркировка. «Резистор» без всякого сопротивления, то есть просто перемычка из металла, имеет маркировку 0, или 000.

Цифровые маркировки

Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три - мантисса сопротивления.

Если ты заглядывал во внутренности современного электронного прибора, то наверняка обратил внимание на то, что радиоэлементы выглядят совсем не так, как у аппаратуры, выпущенной 25-30 лет назад. Обычные транзисторы, диоды и микросхемы заменили детали размером с булавочную головку, припаянные прямо поверх платы. Такие детальки, получившие название SMD, нередко похожи, как две капли воды. Как отличить одну от другой и узнать ее тип и назначение? Сегодня мы поговорим о SMD диодах, стабилитронах и их маркировке, а заодно научимся отличать один тип приборов от другого.

Что такое SMD

Прежде всего, что означает «SMD» и откуда такое странное название? Все очень просто: это аббревиатура от английского выражения Surface Mounted Device, означающего прибор, монтируемый на поверхность. SMD диод (слева), транзистор и светодиод для поверхностного монтажа

То есть, в отличие от обычной радиодетали, ножки которой вставляются в отверстия в печатной плате и припаиваются с другой ее стороны, smd прибор просто накладывается на контактные площадки, предусмотренные на плате, и с этой же стороны припаивается.
Фрагменты плат, собранных по smd технологии

Технология поверхностного монтажа не только позволила уменьшить габариты элементов и плотность элементов на плате, но и существенно упростила сам монтаж, с которым сегодня легко справляются роботы. Автомат прикладывает электронный компонент к нужному месту платы, разогревает это место ИК светом или лазером до температуры плавления нанесенной на площадки паяльной пасты, и монтаж элемента выполнен.


Робот для smd монтажа

Корпуса SMD элементов

Полупроводниковые приборы, предназначенные для поверхностного монтажа, выпускаются в корпусах различных типов. Для диодов и стабилитронов основные из них: металлостеклянные цилиндрические и пластмассовые (керамические) прямоугольные.


SMD полупроводники в корпусах различных типов

Ниже я привожу стандартные размеры SMD корпусов полупроводниковых приборов в зависимости от типа.

Типоразмеры металлостеклянных импортных SMD полупроводников

Тип корпуса

Общая длина, мм

Ширина контактных площадок, мм

Диаметр, мм

DO-213AA (SOD80) 3.5 0.48 1.65
DO-213AB (MELF) 5.0 0.48 2.52
DO-213AC 3.45 0.42 1.4
ERD03LL 1.6 0.2 1.0
ERO21L 2.0 0.3 1.25
ERSM 5.9 0.6 2.2
MELF 5.0 0.5 2.5
SOD80 (miniMELF) 3.5 0.3 1.6
SOD80C 3.6 0.3 1.52
SOD87 3.5 0.3 2.05

Типоразмеры импортных SMD полупроводников в пластмассовом и керамическом корпусах

Тип корпуса

Длина с выводами, мм

Длина без выводов, мм

Ширина, мм

Высота, мм

Ширина вывода, мм

DO-215AA 6.2 4.3 3.6 2.3 2.05
DO-215AB 9.9 6.85 5.9 2.3 3.0
DO-215AC 6.1 4.3 2.6 2.4 1.4
DO-215BA 6.2 4.45 2.6 2.95 1.3
ESC 1.6 1.2 0.8 0.6 0.3
SOD-123 3.7 2.7 1.55 1.35 0.6
SOD-123 2.5 1.7 1.25 1.0 0.3
SSC 2.1 1.3 0.8 0.8 0.3
SMA 5.2 4.1 2.6 1.7
SMB 5.4 4.3 3.6 2.3
SMC 7.95 6.8 5.9 3.3

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

На самом деле марок и типов корпусов SMD диодов и стабилитронов намного больше. Новые появляются быстрее, чем я печатаю, причем каждая солидная фирма-производитель старается ввести новый стандарт и обозвать его по-своему. То же самое можно сказать и про маркировку.

Что касается светоизлучающих SMD диодов (светодиодов), то тут все проще. Реальные размеры этих приборов соответствуют их типоразмеру. К примеру, имеет вид прямоугольника с размерами 2.8 х 3.5 мм, а 5050 – 5 х 5 мм.


Реальные размеры светоизлучающих SMD диодов соответствуют их обозначению

Маркировка SMD полупроводников

С корпусами мы разобрались, но ведь в корпусе одного и того же типоразмера могут находиться приборы с абсолютно различными характеристиками. Как определить, что у тебя в руках? Для этого служит та или иная маркировка, которая наносится на корпус прибора.

Диоды

SMD диоды в цилиндрических корпусах обычно имеют цветную маркировку — помечаются одной или двумя цветными полосками, расположенными у вывода катода.

Таблица цветовой маркировки импортных SMD диодов в цилиндрическом корпусе

Используется подобная маркировка и для диодов в прямоугольном корпусе:

Цветовая маркировка SMD диодов в корпусах SOD-123

* — полоска маркировки расположена ближе к выводу катода

Некоторые производители наносят на свои приборы символьную или цифровую маркировку.

Символьная маркировка SMD диодов, включая диоды Шоттки

Тип диода

Маркировка

BAS16 JU/A6
BAS21 JS
BAV70 JJ/A4
BAV99 JK; JE; A
BAW56 JD; A1
BAT54S1 L44
BAT54C1 L43
BAV23S L31

Полупроводниковые сборки

Нередко производители встраивают в один корпус сразу несколько диодов. Это не только уменьшает габариты всей конструкции, но и упрощает монтаж. Такие приборы называют SMD сборками. В зависимости от типа и назначения SMD сборка может состоять из самого различного количества полупроводников: от двух до нескольких десятков, причем соединяться между собой тем или иным образом они могут внутри самой SMD сборки.

К примеру, весьма распространенное соединение двух диодов Шоттки, использующихся в импульсных выпрямителях, — анодами или катодами. Не менее популярны и готовые выпрямительные мосты SMD, состоящие из четырех полупроводников. Как и обычные диоды, сборки имеют соответствующую маркировку.


Двухдиодная SMD сборка BAV70 и мост DB107GS — внешний вид и их электрическая схема

Выпускаются такие SMD приборы в корпусах SOT, TSOP SSOP и могут иметь разное количество выводов, которое зависит от количества полупроводников и внутренней схемы их соединения. Маркировку наиболее популярных сборок я привожу ниже.

Маркировка полупроводниковых SMD сборок компании Hewlett Packard

#

Цоколевка

Состав сборки

Тип корпуса
2 D1i 2 последовательных диода SOT23
3 D1j 2 диода общий анод SOT23
4 D1h 2 диода общий катод SOT23
5 D6d 2 диода SOT143
7 D6c 4 диода, включенных кольцом SOT143
8 D6a диодный мост SOT143
С D2b 2 диода SOT323
Е D2c 2 диода общий анод SOT323
F D2d 2 диода общий катод SOT323
K D7b 2 диода SOT363
L D7f 3 диода SOT363
M D7g 4 диода общий катод SOT363
N D7h 4 диода общий анод SOT363
P D7i диодный мост SOT363
R D7j 4 диода, соединенных в кольцо SOT363

Маркировка полупроводниковых SMD сборок в корпусах SOT23 и SOT323

Тип прибора

Маркировка Состав сборки

Корпус

BAV70 JJ/A4 2 диода SOT23
BAV99 JK, JE, A7
BAW56 JD, A1
BAT54S L44 2 Шоттки
BAT54C L43
BAV70W A4 2 диода SOT323
BAV99W A7
BAW56W A1
BAT54AW 42 2 Шоттки
BAT54CW 43
BAT54SW 44

Согласно маркировке, нанесенной на корпус прибора, перед нами сборка BAT54S с полупроводниками Шоттки

Стабилитроны

Стабилитроны и диоды могут иметь как цветовую, так и символьную маркировку:

Цветовая маркировка SMD стабилитронов в стеклянном цилиндрическом корпусе

* — полоски маркировки расположены ближе к выводу катода

Символьная маркировка SMD стабилитронов BZX84 в прямоугольном корпусе

Тип прибора

Маркировка

Напряжение стабилизации, В

BZX84C2V7 W4 2.7
BZX84C3V0 W5 3.0
BZX84C3V3 W6 3.3
BZX84C3V9 W8 3.9
BZX84C4V3 Z0 4.3
BZX84C4V7 Z1 4.7
BZX84C5V1 Z2 5.1
BZX84C5V6 Z3 5.6
BZX84C6V2 Z4 6.2
BZX84C6V8 Z5 6.8
BZX84C7V5 Z6 7.5
BZX84C8V2 Z7 8.2
BZX84C9V1 Z8 9.1
BZX84C10 Z9 10.0
BZX84C12 Y2 12.0
BZX84C15 Y4 15.0
BZX84C18 Y6 18.0
BZX84C20 Y8 20.0

Символьная маркировка SMD стабилитронов BZT52 в прямоугольном корпусе

Светодиоды

Маркировка на SMD светодиодах обычно не проставляется (исключение могут составлять подделки — на них частенько наносят маркировку для большей убедительности), а их цифровое обозначение говорит лишь о размерах прибора. Всю остальную информацию можно найти в документации, прилагаемой к SMD светодиодам, или из таблички, которую я привожу ниже:

Основные характеристики SMD светодиодов различных типов

Тип прибора

Мощность, Вт

Световой поток, лм

Габариты, мм

2828 0.5 50 2,8 x2,8
2835 (a) 0.2 29 2,8 x3,5
2835 (b); 0.5 63 2,8 x3,5
2835 (c) 1 130 2,8 x3,5
3014 0.1 9-12 3,0 x 1,4
3020 0.06 5.4 3,0 x 2,0
3020 (b) 0.5 3,0 x 2,0
3020 (c) 1 125 3,0 x 2,0
3030 0.9 110-120 3,0 x 3,0;
3228 1 110 3,2 x 2,8
3258 0.2 6 3,2 x 5,8
3528 (a) 0.06 7 3,5 x 2,8
3528 (b) 1 110 3,5 x 2,8
3535 (a) 0.5 35-42 3,5 x 3,5
3535 (b) 1 110 3,5 x 3,5
3535 (c) 2 3,5 x 3,5
4014 0.2 22-32 4,0 x 1,4
4020 0.5 55 4,0 x 2,0
5050 0.2 14-22 5,0 x 5,0
5060 0.2 26 5,0 x 6,0
5630 0.5 30-45 5,6 x 3,0
5730 0.5 30-45 5,7 x 3,0
5733 0.5 35-50 5,7 x 3,3
5736 0.5 40-55 5,7 x 3,6
7014 (a) 0.5 35-49 7,0 x 1,4
7014 (b) 1 110 7,0 x 1,4
7020 1 110 7,0 x 2,0
7020 0.5 40-55 7,0 x 2,0
7030 1 110 7,0 x 3,0
8520 (a) 0.5 55-60 8,5 x 2,0
8520 (b) 1 110 8,5 x 2,0

Как видно из таблички, прибор 2835 может выпускаться в трех модификациях – на 0.2, 0.5 и 1 Вт. Более того, существует множество подделок, когда в корпус типоразмера 2835 умельцы встраивают кристалл любой мощности – от 0.1 Вт и ниже. А чтобы подделка выглядела убедительнее, как я уже писал выше, жулики могут даже поставить маркировку! Ни визуально, ни по типоразмеру определить, что у тебя действительно находится в руках, нельзя. Это можно сделать только по сопроводительной документации и ориентировочно по цене – чем она ниже, тем мощность светодиода меньше.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

На самом деле, имея некоторый опыт, определить примерную мощность светодиода можно без маркировки визуально. Кристалл нередко просматривается сквозь компаунд, которым он залит. Чем больше размер кристалла, тем мощнее прибор.

Но и это еще не все. Светодиод одного и того же типоразмера может иметь различную цветовую температуру и даже цвет. У тех же 2835 свет может быть теплым, дневным и холодным, а, к примеру, SMD 3020 может оказаться любого цвета свечения.

Изделие 5050 оснащен тремя кристаллами, размещенными в одном корпусе, причем каждый из них тоже может иметь свой цвет свечения. Вся эта информация находится только в сопроводительной документации.


Светодиод 5050 с тремя кристаллами и светодиодная лента, собранная на трехцветных SMD 5050

Вот и закончилась наша беседа об SMD полупроводниках и их маркировке. Теперь ты знаешь, какими они бывают, а при необходимости и сможешь по маркировке определить тип SMD диода, стабилитрона или светодиода, который держишь в руках.

Привет друзья и читатели сайта "РАДИОСХЕМЫ", продолжаем вместе с вами знакомиться с современными . Сегодняшний обзор - обзор SMD транзисторов, которые вы наверно уже видели в современных различных электронных устройствах.

Транзисторы в SMD корпусе, очень удобны, особенно где каждый миллиметр платы важен. Представьте, как бы изменился мобильный телефон (плата которого полностью из SMD деталей), если бы там использовали обычные выводные DIP детали.

Выше фото SMD транзистора на фоне обычного, в TO 92.

Это фото различных СМД транзисторов, справа - обычный в TO92. Как правило, цоколёвка всех таких транзисторов одинакова - это тоже огромный плюс.

Название различных корпусов, DIP и SMD. Фото можно увеличить.

Как сделаны планарные транзисторы, вы можете увидеть ниже.

У планарных, как и у обычных транзисторов, есть множество видов, составные (Дарлингтон), полевые, биполярные и IGBT (биполярные транзисторы с изолированным затвором).

Обратите внимание, на платах и схемах транзисторы маркируются "Q" и "VT" (так должно быть, хотя некоторые производители брезгуют этим), зачем я это пишу? Часто в один и тот-же корпус, изготовитель может впихнуть всё, что ему хочется - от диода и до линейного стабилизатора напряжения (78хх), даже различных датчиков. Ещё существует внутренняя маркеровка завода, к примеру детали фирмы Epcos. На такие детали очень трудно найти даташит, а иногда его вовсе нет в интернете.

Пайка

Паять такие транзисторы не трудно, особенно ускоряет и делает более легким, процесс пайки различных SMD деталек - микроскоп, пинцет (просто незаменимые вещи) различные флюсы и паяльные жиры с BGA-пастой. Сначала лудим контактные площадки нашего транзистора и платы (не перегрейте).

Затем позиционируем наш транзистор, я делаю это пинцетом.

Припаиваем любую из ножек. Отпускаем пинцет, и позиционируем нашу детальку как можно ровнее, для отличного вида, так сказать:)

Припаиваем оставшиеся "ножки" радиоэлемента.

И вот наш транзистор крепко и хорошо припаян к плате. В следующих статьях, буду писать об этом всём подробнее (флюсы, пинцеты, пайка и т.д). А по поводу обозначений и цоколёвок разных типов транзисторов - на форуме есть несколько очень полезных ссылок. Статью написал BIOS .

Обсудить статью SMD ТРАНЗИСТОРЫ

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама