THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Приборы для измерения скорости и расхода 10- 8

Приборы для измерения скорости

Для измерения местных скоростей применяются гидродинамические трубки, термоанемометры и гидрометрические вертушки.

Определение скоростей с помощью гидродинамических трубок основано на измерении скоростного напора , равного разности полного
и статического напоров в потоке. Полный напор измеряется трубкой полного напора, представляющей собой изогнутую под прямым углом трубку, обращенную своим открытым концом против потока (рисунок 4).

И

з уравнения Бернулли, записанного для 1 и 2-го сечения элементарной струйки следует

,

откуда

Рисунок 4 – Трубки полного и статического напоров

Трубка полного напора и статического напора, конструктивно объединены в одном приборе и представляют собой гидродинамическую трубку. Пито-Прандтля (рисунок 5). Приемником полного давления является отверстие 1 осевого канала цилиндра, сообщающееся через трубку полного напора 6, помещенную в державке, со штуцером 9. Для приема статического давленияна боковой поверхности цилиндра выполнены канавки 7, закрытые кожухом 4 с прорезями 3.

Рисунок 5 – Гидродинамическая трубка Пито-Прандтля со сферическим носком

Используются также гидродинамические трубки иного конструктивного оформления. Местная скорость (скорость в точке) определяется по формуле

,

где - поправочный коэффициент, определяемый путем тарирования трубки.

Гидродинамические трубки применимы для измерения скоростей более 1 м/с.

Термоэлектрические анемометры

Действие термоанемометров основано на использовании зависимости между электрическим сопротивлением проводников и их температурой. Термоанемометр представляет собой проволоку из инертного металла (платины, вольфрама, никеля), припаянную к двум электродам, закрепленным в державке (рисунок 6). Толщина проволоки 0,005-0,01 мм, длина 1-3 мм. Проволока помещается в поток и нагревается электрическим током. Поток, обтекающий проволоку, охлаждает ее, электрическое сопротивление проволоки при этом изменяется на некоторую величину в зависимости от скорости потока, фиксируя это изменение с помощью соответствующих электрических схем, можно определить величину местной скорости потока, нормальной к проволоке.

Рисунок 6 – Схема электрической цепи и тарировочная кривая

термоанемометра, работающего по методу постоянной силы тока:

- скорость потока; - напряжение тока

Гидродинамическая вертушка

Представляет собой лопастное колесо, помещенное в поток и приводимое им во вращение (рисунок 7). В процессе измерения фиксируется скорость набегающего потока. Вертушка предварительно тарируется и снабжается тарировочным графиком

Рисунок 7 – Гидрометрическая вертушка

Приборы для измерения расхода и количества жидкости

Средство измерения расхода или количества жидкости называется преобразователь расхода .

По типу измеряемой среды различают расходомеры жидкостные, газа и пара. Одна и та же модель расходомера не может использоваться для измерения разных сред – слишком различны физические параметры.

Под жидкостью понимаются любые типы капельных жидкостей (вода, мазут, нефть и др. технические жидкости)

Под газом понимается природный (метан) или технический (кислород, водород и т.п.) газ, а также сжатый воздух.

Пар может использоваться сухой насыщенный или перегретый. Для влажного пара корректное измерение расхода невозможно. Особо оговариваются максимальные давление и температура пара.

По выходному сигналу – с аналоговым, импульсным или цифровым выходом.

По принципу действия

мерные емкости (тарированный резервуар, бак)

мерные водосливы (поплавковые расходомеры)

с переменной площадью сечения – ротаметры

переменного перепада давления – диафрагмы, сопла и трубы Вентури

тахометрические

электромагнитные (индукционные)

ультразвуковые * 1

вихревые

кориолисовые

Мерные емкости

При объемном способе измерения расхода жидкости, жидкость поступает в тщательно тарированный резервуар (мерник), при этом фиксируется время наполнения определенного объема. Объемный расход равен

.

Способ измерения расхода с помощью мерного резервуара является наиболее точным. Он широко применяется в лабораторной практике для опытных исследований и поверок измерителей расхода.

Мерные водосливы

Служат для измерения расхода воды в лабораториях и на оросительных системах. Пример – треугольный водослив с тонкой стенкой в лабораторных работах.

Расходомеры переменного перепада давления

Расходомерами переменного перепада давления называются измерительные комплексы, основанные на зависимости перепада давления, создаваемого устройством, установленным в трубопроводе, от расхода жидкости или газа.

Состав комплекса:

    Первичный преобразователь расхода (гидравлические сопротивление, трубка Пито);

    первичные линии связи – соединительные трубки и вспомогательные устройства на них (отстойные сосуды, воздухосборники);

    первичный измерительный прибор – дифманометр;

    вторичные линии связи (электрические провода)

    электронный преобразователь (записывающий, показывающий)

Расходомеры переменного перепада давления

с сужающим устройством

Стандартные – диафрагма, сопло, труба Вентури –

не требуют индивидуальной градуировки.

с гидравлическим сопротивлением

например – шариковая набивка

с напорным устройством

Принцип действия основан на измерении перепада давления, возникающего при переходе кинетической энергии в потенциальную.

Пример – Трубка Пито-Прандтля или осредняющие напорные трубки, установленные поперек трубопровода

центробежные расходомеры

основаны на зависимости расхода от перепада давления, образующегося на закругленном элементе трубопровода (колене) под действием центробежных сил

Рисунок 8 – Расходомеры переменного перепада давления:

а – диафрагма; б – сопло; в – труба Вентури

Расход жидкости определяется по формуле

или

где - коэффициент расхода,

- площадь проходного сечения сужающего устройства;

- разность статических напоров,

.
- разность давлений до и после сужающего устройства

- плотность измеряемой среды (зависит от температуры и давления)

Скоростные счетчики чаще всего применяют для контроля количества воды, расходуемой в системах водоснабжения. Различают скоростные счетчики с вертикальной крыльчаткой (крыльчатые) и с винтовыми вертушками (турбинные).

Крыльчатый счетчик состоит (рисунок 9) из крыльчатки 1 и передаточного механизма 8, связанного со счетным механизмом 9. Передаточный и счетный механизм представляет собой ряд последовательно зацепленных шестерен.

Расход жидкости определяется отношением прошедшего через счетчик объема жидкости за определенное время к времени

.

Ротаметр (рисунок 10) представляет собой коническую прозрачную стеклянную трубку 1 (угол конусности от 35  до 5 о 35 //) с помещенным внутри нее поплавком 2.

Рисунок 9 – Счетчик с вертикальной крыльчаткой Рисунок 10 – Ротаметр

Ротаметр устанавливается на вертикальном участке трубопровода. Если сила, воздействующая на поплавок, превышает вес поплавка, то поплавок всплывает, увеличивая площадь щели для протекания жидкости, при этом сила, действующая на поплавок со стороны жидкости, уменьшается. Когда гидродинамическая сила становится равной весу поплавка, его всплывание прекращается.

Измерение расхода ротаметром основывается на использовании связи между расходом и положением поплавка. Характер этой связи зависит от угла конусности трубки, формы и веса поплавка, вязкости жидкости и обычно устанавливается путем индивидуального тарирования ротаметров.

Ротаметры применяют для измерения расходов жидкости и газа в широком диапазоне, начиная от малых, порядка 0,1 см 3 /с. Погрешность измерений не превышает 6 %. Недостатком их является зависимость показаний от физических свойств жидкости и невозможность измерять переменные во времени расходы.

1Прим.: Не «ультро» а «ультра» !

Измеритель скорости является востребованным прибором, который используется для различных целей. Он измеряет скорость движения объектов и веществ в километрах в час или метрах в секунду.

Виды измерителей скорости

Измеритель скорости очень точное оборудование, которое используется практически повсеместно в различных отраслях промышленности и бытовой жизни. Его конструкция многократно модернизировалась под определенные цели. Существуют следующие разновидности измерителей скорости:

  • Спидометр.
  • Радар.
  • Анемометр.
  • Хронограф.
  • Измеритель газового потока.
  • Скоростемер для воды.
Спидометр

Спидометр – это прибор для измерения скорости колесных транспортных средств. Он устанавливается на панель приборов автомобилей, сельхозтехники, спецтехники и поездов. Он бывает механическим, электронным и электромеханическим.

Механическое устройство оснащается тросом, который выполняет роль привода. Трос подсоединяется к коробке передач или напрямую к оси колеса. Один его оборот соответствует обороту колеса и соответственно прохождению определенной дистанции. Специальный механизм с шестеренками оперативно проводит расчет соответствия пройденной дистанции за определенный промежуток времени к скорости в километрах в час. Подобное оборудование оснащается цифровой шкалой и стрелкой, которая указывает на достигнутую скорость. Механические спидометры используются и сейчас. Их главный недостаток заключается в периодическом износе троса, который необходимо менять. Помимо текущего показания скорости механические модели имеют встроенный в корпусе циферблат, показывающий пробег транспорта с момента начала его эксплуатации.

Электронные спидометры оснащаются датчиками, передающими информацию в электронном виде на циферблат на панели приборов. Она отображается как светящиеся цифры. Отсутствие стрелок позволяет проводить более комфортную визуальную оценку показателей скорости движения.

Электромеханические спидометры являются гибридом двух типов. В них снятие показателей осуществляется электрическим датчиком, но вывод данных о развиваемом темпе движения проводится с помощью стрелки.

Радар

Радар – это прибор предназначенный для измерения скорости движущегося объекта без физического контакта с ним. Обычно такое оборудование применяется правоохранительными органами, а также спортивными судьями. Принцип действия прибора заключается в том, что он создает радиосигнал, который направляется на движущийся объект. После при достижении волны к автомобилю или другому объекту, волна отражается и возвращается на чувствительный элемент устройства. По характеристикам отражаемой волны прибор вычисляет скорость, с которой двигался объект. Существует также устройство, где вместо радиосигнала направляется луч лазера. Выдаваемая на циферблате скорость выражается в километрах за час.

Данное оборудование является не идеальным и дает небольшую погрешность, которая указывается производителем. Радары отличаются между собой не только по классу точности, но и дистанции измерения. Все зависит от мощности излучателя и чувствительного элемента, который принимает отраженные сигналы.

Современные радары существенно отличаются от первых устройств этого класса. Дело в том, что в связи с наличием штрафов за превышение скорости, для защиты от подобных неприятностей началось производство так называемых антирадаров. Данные оборудования позволяют глушить радиосигналы и сбивать показатели, которые выдает радар. В связи с этим полицейские измерители скорости начали оснащаться системой шифрования с особой технологией отправки импульсов и их восприятия. Нельзя сказать, что это дает стопроцентную гарантию от погрешности, но по крайней мере позволяет игнорировать глушение от большинства приборов подавляющих сигналы.

Анемометр

Анемометр – это измеритель скорости передвижения воздушных и газовых потоков. Принцип его действия заключается в наличии лопастей подобных тем, что используются в вентиляторах или в авиации. При прохождении ветра сквозь диффузор анемометра лопасти начинают проворачиваться. Специальный механизм измеряет частоту вращения и определяет скорость движения потока в километрах в час или метрах в секунду. Такое оборудование обычно используется метеорологами для расчетов изменения погоды. По характеристикам движения ветра определяется через сколько времени циклон достигнет определенной местности.

В бытовой жизни анемометры нашли свое применение в авиации. Они устанавливаются на аэродромах для определения параметров силы ветра с целью корректировки диспетчерами пилотов при посадке самолетов. Анемометрами пользуются военные снайперы для корректировки направления полета пули. С помощью специальных таблиц определяется угол сноса пули ветром при полете. Чем слабее воздушный поток, тем по более ровной траектории нужно выпускать пулю. Данный показатель является важным при стрельбе на длинные дистанции.

Анемометры используются в вентиляционных системах. С их помощью проводится регулировка вентиляторов для точной настройки вентилирования без создания сквозняков. Вывод показателей скорости осуществляется с помощью стрелки как в обычных спидометрах для автомобиля или на циферблат, если прибор является электронным или электромеханическим.

Подобное оборудование не всегда имеет механический привод. Существуют также анемометры с теплочувствительным элементом, который начинает деформироваться при остывании. При движении воздушного потока чувствительный элемент обдувается, и его температура снижается. При этом оборудованием проводятся сложные расчеты, в результате которых выводятся точные показатели скорости ветра с поправкой на температуру самого воздуха. Одними из последних изобретений стали ультразвуковые анемометры, которые анализируют растворение звука посылаемого против движения воздушных масс.

Хронограф

Хронограф – это универсальное оборудование, которое используется для различных целей. Одним из способов его применения является измерение скорости движения пули выпущенной из пневматического или огнестрельного оружия. Главные особенности таких устройств в том, что они дают точные показатели скорости движения мелких объектов. Такой измеритель скорости даст возможность снять показатели о характеристиках движения стрелы выпущенной из лука, болта из арбалета или камушка из рогатки.

Хронограф снимает характеристики о полете пули или другого мелкого объекта в метрах за секунду. Также отдельные модели могут иметь возможность переключения показателей на километры в час. Хронографы имеют сложную конструкцию и являются очень чувствительными. Те приборы, которые применяются для измерения скорости движения пуль и прочих боеприпасов выполняются в двух вариантах – дульном и рамочном.

Дульный хронограф устанавливается на дуло пневматического или огнестрельного оружия. С его помощью удастся определить начальную скорость вылета пули. По этому показателю можно судить о мощности оружия и его пробиваемой силе на определенном расстоянии. Чтобы подключить хронограф к дулу оружия требуется наличие специального переходника. Для разных типов оружия переходник отличается, но сам измеритель скорости пули может использоваться практически всегда. Хронографы, которые применяются для пневматического оружия, имеют диапазон измерения до 350-400 м/с. Оборудование для огнестрельного оружия имеют значительно больший диапазон чувствительности.

Рамочный хронограф является более универсальным. Он выполнен в виде рамки, в которую нужно прицелиться, чтобы пуля пролетела между стенками. С помощью такого хронографа можно измерить скорость движения практически любого мелкого объекта. Это может быть стрела и даже брошенный рукою камень. Подобное оборудование более габаритное, но благодаря универсальности пользуется большой популярностью.

Измеритель скорости газового потока

Также существуют измерители скорости для газовых и воздушных потоков, которые двигаются внутри труб. Данные устройства фиксируются на трубопроводах и оснащаются крыльчаткой, которая проворачивается при контакте со средой. Подобное оборудование имеет много общего со счетчиками газа, но в отличие от них оно показывает не какой объем был пропущен всего, а позволяет рассчитать, сколько газа при такой интенсивности перекачки можно провести за определенный промежуток времени. Подобное оборудование выдает показатели не только в метрах за секунду, но и в объеме. Это могут быть литры или кубические метры.

Интенсивность давления на крыльчатку в различных газах отличается. В связи с этим оборудование калибруется производителем под среду, с которой будет работать. Таким образом, если измеритель скорости рассчитан для природного газа, он не будет давать точные показатели в случае работы с углекислотой. Помимо оборудования для веществ в жидком состоянии, существуют и измерители для газообразной среды, такой как воздух и даже пар.

Скоростемер для воды

Измеритель скорости воды имеет подобную конструкцию, что и для газовой среды. Его используют в исключительных случаях, когда нужно узнать скорость движения водяного потока, а не объем прокачки. Данный показатель является важным при тестировании оборудования для пожаротушения, водяных пушек и в прочих целях. Такой скоростемер представляет собой вытянутую трубку, которая подсоединяется к гибкому шлангу или трубопроводу. Кроме устройств с вращающейся крыльчаткой, снятие показателей может осуществляться лазером или ультразвуковыми волнами.

Для летательных аппаратов различают истинную, воздушную, приборную воздушную и путевую скорость полета.

Истинной воздушной скоростью называется скорость движения самолета относительно воздуха.

Приборной (или индикаторной) воздушной скоростью называ­ется истинная воздушная скорость, приведенная к нормальной (массовой) плотности воздуха. Эта скорость характеризует вели­чину аэродинамических сил, действующих на самолет.

Путевой скоростью называется скорость движения самолета от­носительно Земли. Она равна геометрической сумме истинной воз­душной скорости и скорости ветра.

Помимо скоростей, летчику в полете необходимы также сведе­ния и об относительной скорости полета, т. е. о числе М.

На самолетах и вертолетах имеются соответствующие датчики и указатели названных выше скоростей.

Для измерения воздушных скоростей наибольшее распростра­нение нашел аэродинамический метод, основанный на измере­нии полного и статического давления встречного потока воз­духа.

Измерение путевой скорости полета осуществляется радиотех­ническими, инерциальными и другими системами.

В качестве устройств, обеспечивающих подвод полного и стати­ческого давлений ко всем анероидно-мембранным приборам, при­меняются приемники воздушного давления (ПВД) рис. 167. Он имеет трубку 1 полного давления и полость 2 статического дав­ления. Трубка полного давления спереди открыта и устанавливает­ся по направлению полета.

Полость статического давления имеет боковые отверстия, соеди­няющие ее с атмосферой. Эти отверстия должны быть расположе-

где а - скорость звука. 6*

Градуировка шкалы измерителя истинной воздушной скорости определяется следующим выражением:

V = "I / , (2.23)

где у л - плотность воздуха на высоте Н полета.

Или при делении формулы (2.23) на (2.21) получим

V = Vnp V~Тн (2’24)

Поскольку? = , то можно вместо формулы (2.24) записать

Следовательно, истинная скорость получается из приборной скорости после внесения в нее поправок на статическое давление рн и температуру Тн на данной высоте Н полета, т. е. поправок на изменение плотности воздуха при изменении высоты полета.

Все вышеприведенные выражения учитываются при создании конструкции прибора. На рис. 168 изображена принципиальная схема измерителя приборной и воздушной скорости. При увели­чении скорости полета под действием разности давления рполн - Рст мембранная коробка 1 через тягу поворачивает стрелку 2 ука­зателя приборной скорости. Одновременно центр коробки 1 пере­мещает тягу 3 и, следовательно, стрелку 5 указателя истинной скорости.

Если увеличивается высота полета, то анероидная коробка 4 расширяется и поворачивает также тягу 3, преодолевая усилие пружины Я. При этом уменьшается длина плеча I стрелки 5, и она поворачивается па дополнительный угол, учитывающий изменение плотности воздуха.

На рис. 169 приведена конструктивная схема комбинированно­го измерителя скорости с диапазоном измерения до 2 000 км/ч (КУС-2 000). Перемещение центра манометрической коробки 6 че­рез оси, поводки 7 и 8, сектор 3 и трубку 9 передается на широкую стрелку 2 приборной скорости и одновременно через ряд повод­ков, осей и сектор 10 передается на узкую стрелку 1 истинной ско­рости. С изменением высоты по­лета изменяется положение цент­ра анероидной коробки 5, что вызывает смещение поводка 4 и изменение передаточного отно­шения между осями М и А. Ось М связана с манометрической коробкой, а ось А - со стрелкой истинной воздушной скорости.

Для учета изменения температуры воздуха с высотой полета (при этом полагают, что температура изменяется в соответствии со стандартной атмосферой) выбирают соответствующим образом ха­рактеристику анероидной коробки 5.

    Часы прибор для измерения времени - Содержание: 1) Исторический очерк развития часовых механизмов: а) солнечные Ч., b) водяные Ч., с) песочные Ч., d) колесные Ч. 2) Общие сведения. 3) Описание астрономических Ч. 4.) Маятник, его компенсация. 5) Конструкции спусков Ч. 6) Хронометры …

    измерение - 3.10 измерение (measurement): Процесс получения информации об эффективности СМИБ, а также мер и средств контроля и управления с использованием метода измерения, функции измерения, аналитической модели и критериев принятия решения. Источник …

    Измерение - операция, посредством которой определяется отношение одной (измеряемой) величины к другой однородной величине (принимаемой за единицу); число, выражающее такое отношение, называется численным значением измеряемой величины. И.… …

    Лот прибор* - прибор для измерения глубины моря. Простейший Л., употребляющийся с самых древних времен и по настоящее время для небольших глубин, состоит из свинцовой конической гири и разделенной веревки, называемой лотлинем. Различают ручные Л. и диплоты.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Лот (прибор) - У этого термина существуют и другие значения, см. Лот … Википедия

    Лаг (морской прибор) - У этого термина существуют и другие значения, см. Лаг. Корабельный лаг Лаг прибор, предназначенный для измерения скорости движения судна. В древности в качестве лага использовался (и используется по сей день на небольших судах) ручной, или… … Википедия

    ГОСТ Р 54418.12.1-2011: Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 12-1. Измерение мощности, вырабатываемой ветроэлектрическими установками - Терминология ГОСТ Р 54418.12.1 2011: Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 12 1. Измерение мощности, вырабатываемой ветроэлектрическими установками оригинал документа: 3.1 аэродинамическое препятствие… … Словарь-справочник терминов нормативно-технической документации

    РМГ 75-2004: Государственная система обеспечения единства измерений. Измерение влажности веществ. Термины и определения - Терминология РМГ 75 2004: Государственная система обеспечения единства измерений. Измерение влажности веществ. Термины и определения: 11 абсолютно сухое вещество: Гипотетическое вещество, совершенно не содержащее влаги. Определения термина из… … Словарь-справочник терминов нормативно-технической документации

    ЦИФРОВОЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ ПРИБОР - средство измерений, в к ром значение измеряемой электрич. величины представляется в виде числа на отсчётном устройстве. Применяется для измерений практически всех электрич. величин (напряжения, тока, сопротивления, ёмкости, индуктивности и др.),… … Физическая энциклопедия

    Термоанемометр - прибор для измерения скорости потока жидкости или газа от 0,1 м/сек и выше, принцип действия которого основан на зависимости между скоростью потока v и теплоотдачей проволочки, помещенной в поток и нагретой электрическим током. Основная… … Большая советская энциклопедия

Скорость полета . Одна из важнейших характеристик для любого летательного аппарата. Мы все привыкли, что самолет обязательно означает «быстро». Все ассоциации работают только в этом направлении. Скорость многим нравится. Практически любой человек не прочь прокатиться «с ветерком» на своем авто (если, конечно, полиция не помешает 🙂) . И информацию о движении здесь получить несложно. Достаточно взглянуть на спидометр, который механическим или электронным способом соединен с колесом. Скорость вращения колеса дает нам в конечном итоге скорость, с которой автомобиль движется по дороге.

Но а как же быть с самолетом? Нет ведь в воздухе дорог, по которым можно было бы ехать:-). Единственная среда, с которой летательный аппарат контактирует непосредственно - это воздух. Вот от него-то он большую часть информации о своем движении и получает. Что касается конкретно скорости полета, то вполне понятно, что чем быстрее самолет летит, тем сильнее на него давит встречный воздушный поток (скоростной или динамический напор). Отсюда логично было бы определять скорость полета в зависимости от величины этого давления. Так же как, кстати, и с атмосферным давлением и высотой. Ведь чем выше летит самолет, тем атмосферное давление ниже. О высоте, однако, поговорим в одной из следующих статей, а пока на повестке дня скорость полета .

Для сбора и обработки такого рода данных на современных самолетах существуют специальные системы. Одно из названий для них - система воздушных сигналов (СВС) .

Работа датчиков такой системы, собирающих данные для определения скорости полета основана на двух уже почтенного возраста изобретениях. Первое - это трубка Пито . Она изобретена в 1732 году французским ученым А.Пито . Он занимался гидравликой, то есть изучал течение жидкости в трубах. Как известно законы гидравлики при определенных условиях вполне применимы для газов, то есть для воздуха. Его мы в дальнейшем и будем иметь ввиду.

Схема классической трубки Пито

Трубка Пито представляет собой L — образную трубку, один конец которой помещен в скоростной (воздушный:-)) поток. Этот поток в трубке тормозится, создавая в ней избыточное давление, по величине которого и можно судить о скорости потока, то есть по сути дела скорости полета, если эта трубка установлена на летательном аппарате. Вобщем-то принцип достаточно простой:-).

Однако здесь надо не забывать еще об одной важной вещи. Все, что находится внутри земной атмосферы, существует в ней под постоянным атмосферным (статическим) давлением. Мы его практически не ощущаем (если, конечно, все в порядке со здоровьем:-)), но оно есть и так или иначе оказывает влияние практически на все физические процессы, происходящие вокруг нас, то есть на всю нашу жизнь. Прямо как в фильме «ДМБ»:-):

— Видишь суслика?
— Нет…
— И я не вижу… А он — есть!

Если серьезно, то то давление, которое мы получаем при торможении воздушного потока в трубке Пито – это так называемое полное давление . Оно, на самом деле, равно сумме двух других давлений.

Полное давление = динамическое давление (скоростной напор) + статическое давление.

Это, между прочим, упрощенное изложение уравнения Бернулли , того самого ученого, о котором мы уже упоминали в статье о . Все правильно, ведь в обоих статьях мы говорим о газовых потоках, а это стихия любого летательного аппарата:-).

Динамическое давление, его еще называют скоростной напор , это то самое давление, которое и дает нам скорость полета . Статическое давление – это наше незаметное (как суслик:-)) давление. И при измерении скорости его обязательно надо учитывать, ведь оно в разных точках пространства может иметь различные значения, особенно с изменением высоты полета, и тем самым оказывать влияние на величину измеренной скорости полета.

Теперь для простоты понимания приведу пару формул. Именно для простоты понимания, хоть это и не в традициях сайта:-). Итак обзовем (как говорил мой преподаватель по физике) полное давление Р , динамическое — Р 1 , статическое — Р 0 , скорость полета (потока) – V . И еще нам понадобится такой физический параметр, как плотность воздуха ρ . Я думаю все еще со школы помнят, что это такое:-).

Скоростной напор выражается такой формулой Р 1 = ρV²/2.

В итоге мы имеем такое уравнение: Р = Р 0 + Р 1 = Р 0 + ρV²/2

Из него очень просто получить искомую скорость полета: V = √((2(Р — Р 0))/ρ)

Исходя из этого несложного выражения работают все авиационные воздушные (аэродинамические) измерители скорости. Как пример можно привести достаточно простой указатель скорости для малоскоростных самолетов УС-350 .

Указатель скорости УС-350.

Как видите, нам, чтобы определить скорость полета, нужно измерить полное давление потока и статическое давление. Классическая трубка Пито дает только полное давление. Поэтому статику приходится измерять отдельно. Во избежание этого неудобства трубка Пито была усовершенствована.

Это второе изобретение (а точнее усовершенствование) из тех двух, о которых я говорил выше. Его сделал немецкий ученый-физик Людвиг Прандтль , которого даже иногда называют отцом современной аэродинамики. Он объединил измерение полного давления потока и статического давления в одной трубке. Для этого в ней есть одно отверстие в направлении потока для полного давления и ряд отверстий на поверхности, обычно расположенных по кольцу, для статического давления. Оба эти давления обычно отводятся в герметичные емкости, разделенные чувствительной мембраной и уже ее движение передается на стрелочный указатель скорости полета. Вот и все. Все гениальное просто, как известно:-)… Такое устройство называют трубкой Прандтля или Пито-Прандтля . На рисунке: 1 — трубка Прандтля, 2 — воздуховоды, 3 — шкала указателя скорости (УС), 4 — чувствительная мембрана.

Схема работы трубки Прандтля (ПВД).

Работа указателя скорости неплохо показана в этом небольшом ролике.

На современных летательных аппаратах эти устройства получили новое, более простое и правильное название: приемники воздушного давления (ПВД) . Они дают первичные данные в сложный комплекс системы воздушных сигналов. Трубки Пито в чистом виде сейчас практически не применяются. Хотя кое-где в малой авиации они еще встречаются. В комплекте к ним тогда обязательно идут приемники статического давления в виде плиты с рядом отверстий на обшивке летательного аппарата.

Трубка Пито под крылом самолета Cessna 172.

Чаще используются так называемые комбинированные ПВД. Они по конструкции представляют собой типичные трубки Прандтля. Эти устройства обязательно снабжаются мощной системой электрического обогрева, так как небольшие отверстия для замера давлений при обледенении самолета вполне могут быть закупорены льдом, что, конечно, может помешать их корректной работе. На стоянках приемники воздушных давлений закрываются специальными заглушками или чехлами для исключения попадания посторонних предметов и грязи в отверстия.

Типичный ПВД современного самолета.

Приемник воздушного давления на СУ-24М (цифры 1 и 2).

Все данные, выдаваемые ПВД, как я уже говорил, в итоге передаются на стрелки специальных приборов – указателей скорости полета . Они довольно разнообразны, как разнообразны и определения для скоростей полета летательного аппарата. Ведь он передвигается не только относительно земли, но и относительно атмосферы, которая сама по себе среда очень нестабильная.

Итак, скорости летательного аппарата .

Воздушная скорость (самая важная:-)). Она делится на два вида:

Истинная воздушная скорость (True Airspeed (TAS )) и Приборная воздушная скорость (Indicated Airspeed (IAS ))

Приборная скорость – эта та скорость, которую летчик видит в своей кабине на приборе-указателе скорости. Она используется для пилотирования летательного аппарата непосредственно в данный момент времени.

Истинная скорость – это фактическая скорость полета самолета относительно воздуха. Она используется для навигации. Зная ее, например, рассчитывается время прибытия в конечный пункт маршрута и возможные при этом отклонения. Измерить эту скорость обычно невозможно. Она рассчитывается с использованием приборной скорости, давления воздуха и его температуры. При этом учитываются погрешности указателя приборной скорости. Они всегда есть, как у любого измерительного прибора на нашей земле:-). Эти погрешности (или ошибки) бывают:

Инструментальные . Возникают из-за несовершенства и особенностей изготовления самого прибора.

Аэродинамические . Это ошибки, возникающие при замере статического давления. Обусловлены конструкцией самолета, местом расположения датчиков и скоростью полета.

Методические . Эти ошибки обусловлены тем, что каждый указатель скорости рассчитывается и тарируется под определенные условия. В физике такие условия называются нормальными . Это когда атмосферное давление равно 760 мм рт.ст. , а температура воздуха 15° С . Но на самом деле с подъемом на высоту эти условия меняются. Меняется и плотность воздуха и следовательно скорость, которую показывает прибор, то есть приборная. С подъемом на высоту приборная скорость всегда меньше истинной. Они равны только при нормальных атмосферных условиях. Все эти погрешности учитываются в виде поправок при навигационных расчетах.

Путевая скорость (Ground Speed (GS )). Это скорость летательного аппарата относительно земли. Она рассчитывается на основании истинной скорости с учетом скорости ветра и используется при решении навигационных задач.

Крейсерская скорость . При этой скорости величина отношения потребной тяги к скорости полета минимальна. То есть летательный аппарат на этом режиме максимально экономичен при сохранении скорости, достаточной для выполнения задачи. Крейсерская скорость обычно равна 0,7-0,8 от максимальной. На ней выполняются долговременные полеты по маршрутам.

Вот пока, пожалуй, и все. Однако в завершение скажу об одной важной детали. Говоря в этой статье о воздушных потоках и скоростях, мы имели ввиду скорости до 350-400 км/ч. Дело в том, что начиная с этих скоростей проявляется новый эффект воздушного потока – сжимаемость . Она порождает новую методическую ошибку в измерении скорости, которую тоже надо учитывать. Влияние сжимаемости с ростом высоты и скорости полета растет, переходя в эффекты сверхзвука. Но скорость полета на сверхзвуке, трубка Пито на этом режиме и другие приборы измерения скорости — это уже тема следующей статьи…

До новых встреч:-)…

P.S. В заключении предлагаю вам посмотреть дополнительный ролик, рассказывающий о трубках Пито и Прандтля.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама