THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Многоскоростные электродвигатели - асинхронные двигатели с несколькими ступенями частоты вращения, предназначены для привода механизмов, требующих ступенчатого регулирования частоты вращения.

Многоскоростные электродвигатели - электродвигатели специальной конструкции. Они имеют особую обмотку статора и нормальный короткозамкнутый ротор.

Наиболее простым способом получения двух разных чисел пар полюсов является устройство на статоре асинхронного двигателя двух независимых обмоток. Электротехнической промышленностью выпускаются такие двигатели с синхронными скоростями вращения 1000/1500 об/мин.

Существует, однако, ряд схем переключения проводников обмотки статора, при которых одна и та же обмотка может создать различные числа полюсов. Простое и широко распространенное переключение такого рода показано на рис. 1, а и б. Катушки статора, включенные последовательно, образуют две пары полюсов (рис. 1, а). Те же катушки, включенные в две параллельные цепи, как это показано на рис. 1, б, образуют одну пару полюсов.

Промышленность выпускает многоскоростные однообмоточные электродвигатели с последовательно-параллельным переключением и с отношением скоростей 1:2 с синхронными скоростями вращения 500/1000, 750/1500, 1500/3000 об/мин.

Описанный выше способ переключения не является единственным. На рис. 1, в приведена схема, образующая такое же число полюсов, как и схема, представленная на рис. 1, б.

Наибольшее распространение в промышленности получил, однако, первый способ последовательно-параллельного переключения , так как при таком переключении от обмотки статора может быть выведено меньше проводов, а следовательно, и переключатель может быть проще.

Рис. 1. Принцип переключения полюсов асинхронного двигателя.

Три фазовые обмотки могут быть включены в трехфазную сеть звездой или треугольником. На рис. 2, а и б показано широко распространенное переключение, при котором электродвигатель для получения меньшей скорости включается треугольником с последовательным соединением катушек, а для получения большей скорости - звездой с параллельным соединением катушек (так называемой двойной звездой).

Наряду с двухскоростными электропромышленность выпускает также трехскоростные асинхронные двигатели . В этом случае статор электродвигателя имеет две отдельные обмотки, одна из которых обеспечивает две скорости путем описанного выше переключения. Вторая обмотка, включаемая обычно в звезду, обеспечивает третью скорость.

При наличии на статоре электродвигателя двух независимых обмоток, каждая из которых допускает переключение полюсов, можно получить четырехскоростной электродвигатель. Числа полюсов подбирают при этом так, чтобы скорости вращения составили нужный ряд. Схема такого электродвигателя представлена на рис. 2, в.

Следует заметить, что вращающееся магнитное поле будет наводить в трех фазах неработающей обмотки три э. д. с, одинаковые по величине и сдвинутые по фазе на 120°. Геометрическая сумма этих электродвижущих сил, как известно из электротехники, равна нулю. Однако, вследствие неточной синусоидальности фазовых э. д. с. тока сети, сумма этих э. д. с. может быть отличной от нуля. В этом случае в замкнутой неработающей обмотке возникает ток, нагревающий эту обмотку.

В целях предотвращения этого явления схему переключения полюсов составляют таким образом, чтобы неработающая обмотка была разомкнута (рис. 12, в). Вследствие небольшой величины указанного выше тока у некоторых электродвигателей, разрыва замкнутого контура неработающей обмотки иногда не делают.

Выпускаются двухобмоточные трехскоростные двигатели , имеющие синхронные скорости вращения 1000/1500/3000 и 750/1500/3000 об/мин, и четырехскоростные двигатели, имеющие 500/750/1000/1500 об/мин. Двухскоростные двигатели имеют шесть, трехскоростные - девять и четырехскоростные - 12 выводов к переключателю полюсов.

Следует заметить, что существуют схемы двухскоростных двигателей, которые при одной обмотке позволяют получить скорости вращения, отношение которых не равно 1:2. Такие электродвигатели обеспечивают синхронные скорости вращения 750/3000, 1000/1500, 1000/3000 об/мин.

Путем использования специальных схем одной обмотки можно получить также три и четыре различных числа пар полюсов. Такие однообмоточные многоскоростные электродвигатели отличаются значительно меньшими габаритными размерами, чем двухобмоточные двигатели с теми же параметрами, что весьма важно для станкостроения.

Кроме того, у однообмоточных электродвигателей несколько выше и меньше трудоемкость изготовления. Недостатком однообмоточных многоскоростных электродвигателей является наличие большего числа проводов, вводимых к переключателю.

Сложность переключателя определяется, однако, не столько числом выведенных наружу проводов, сколько числом одновременно осуществляемых переключений. В связи с этим были разработаны схемы, позволяющие при наличии одной обмотки получить три и четыре скорости при относительно простых переключателях.

Рис. 2. Схемы переключения полюсов асинхронного двигателя.

Такие электродвигатели выпускаются станкостроительной промышленностью при синхронных скоростях 1000/1500/3000, 750/1500/3000, 150/1000/1500, 750/1000/1500/3000, 500/750/1000/1500 об/мин.

Вращающий момент асинхронного двигателя может быть выражен известной формулой

где Iг - ток в цепи ротора; Ф - магнитный поток двигателя; φ2- угол сдвига фаз между векторами тока и э. д. с. ротора.

Рис. 3. Трехфазный многоскоростной электродвигатель с короткозамкнутым ротором.

Рассмотрим эту формулу применительно к вопросам регулирования скорости асинхронного двигателя.

Наибольшая продолжительно допустимая сила тока в роторе определяется допустимым нагревом и, следовательно, является примерно постоянной величиной. Если регулирование скорости ведется с постоянным магнитным потоком, то при всех скоростях двигателя наибольший длительно допустимый момент будет также величиной постоянной. Такое регулирование скорости называется регулированием с постоянным моментом.

Регулирование скорости изменением сопротивления в цепи ротора является регулированием с постоянным предельно допустимым моментом, так как магнитный поток машины при регулировании не изменяется.

Предельно допустимая полезная мощность на валу электродвигателя при меньшей скорости вращения (и, следовательно, большем числе полюсов) определяется выражением

где Iф1 - фазовый ток, предельно допустимый по условиям нагрева; Uф1 - фазовое напряжение статора при большем числе полюсов.

Предельно допустимая полезная мощность на валу электродвигателя при большей скорости вращения (и меньшем числе полюсов) где Iф2 - фазовый ток, предельно допустимый по условиям нагрева при второй схеме включения статора; Uф2- фазовое напряжение в этом случае.

При переходе от соединения треугольником к соединению звездой фазовое напряжение уменьшается в √2 раза. Таким образом, при переключении со схемы а на схему б (рис. 2) получим отношение мощностей

Принимая приближенно

получим

Иначе говоря, мощность на меньшей скорости составляет 0,86 мощности на большей скорости вращения ротора. Имея в виду относительно небольшое изменение наибольшей длительно допустимой мощности на обеих скоростях, такое регулирование условно именуют регулированием при постоянной мощности.

Если при последовательном соединении половин каждой фазы воспользоваться соединением звездой, а затем переключить на соединение параллельной звездой (рис. 2, б), то получим

Или

Таким образом, в данном случае имеет место регулирование скорости с постоянным моментом. У металлорежущих станков приводы главного движения требуют регулирования скорости с постоянной мощностью, а приводы подач - регулирования скорости с постоянным моментом.

Приведенные выше выкладки соотношения мощностей при высшей и низшей скоростях носят приближенный характер. Не была, например, учтена возможность повышения нагрузки на высоких скоростях вследствие белее интенсивного охлаждения обмоток; принятое равенство также очень приближенно. Так, для двигателя 4А имеем

В результате соотношение мощностей для этого двигателя P1/P2 = 0,71. Такие же примерно соотношения имеют место и для других двухскоростных двигателей.

Новые однообмоточные многоскоростные электродвигатели в зависимости от схемы переключения допускают регулирование скорости с постоянной мощностью и с постоянным моментом.

Небольшое число ступеней регулирования, которое может быть получено у асинхронных двигателей с переключением полюсов, обычно позволяет использовать такие двигатели на станках только при наличии специально сконструированных коробок скоростей.

Кроме реостатного и прямого способов пуска асинхронных двигателей существует другой распространенный способ – переключением со звезды на треугольник .

Способ переключения со звезды на треугольник используется в двигателях, которые рассчитаны на работу при соединении обмоток треугольником. Этот способ осуществляется в три этапа. В начале, двигатель запускают при соединении обмоток звездой, на этом этапе двигатель разгоняется. Затем переключают на рабочую схему соединения треугольник, причем при при переключении нужно учитывать пару нюансов. Во-первых, нужно правильно рассчитать время переключения, потому что если слишком рано замкнуть контакты, то не успеет погаснуть электрическая дуга, а также может возникнуть короткое замыкание. Если переключение будет слишком долгим, то это может привести к потери скорости двигателя, а в следствии к увеличению броска тока. В общем, нужно четко скорректировать время переключения. На третьем этапе, когда обмотка статора уже соединена треугольником, двигатель переходит в установившийся режим работы.

Смысл этого способа в том что, при соединении обмоток статора звездой, фазное напряжение в них понижается в 1,73 раз. В такое же количество раз уменьшается и фазный ток, который протекает в обмотках статора. При соединении обмоток статора треугольником фазное напряжение равно линейному, а фазный ток в 1,73 раза меньше линейного. Получается, что соединяя обмотки звездой, мы уменьшаем линейный ток в 3 раза.

Чтобы не запутаться в цифрах, давайте рассмотрим пример.

Допустим, рабочей схемой обмотки асинхронного двигателя является треугольник, а линейное напряжение питающей сети 380 В. Сопротивление обмотки статора Z=20 Ом. Подключив обмотки в момент пуска звездой, уменьшим напряжение и ток в фазах.

Ток в фазах равен линейному току и равен

После разгона двигателя, переключаем со звезды на треугольник и получаем уже другие значения напряжений и токов.

Как видите линейный ток при соединении треугольником больше в 3 раза линейного тока при соединении звездой.

Данный способ запуска асинхронного двигателя применяется в тех случаях, когда присутствует небольшая нагрузка, либо когда двигатель работает на холостом ходу. Это связано с тем, что при уменьшении фазного напряжения в 1,73 раза, согласно формуле для пускового момента которая предоставлена ниже, момент уменьшается в три раза, а этого недостаточно, чтобы совершить пуск с нагрузкой на валу.

Где m – количество фаз, U – фазное напряжение обмотки статора,f – частота тока питающей сети, r1,r2,x1,x2-параметры схемы замещения асинхронного двигателя,p – число пар полюсов.

Ротор турбинного компрессора

Как известно, трехфазные асинхронные электрические (эл.) двигатели, имеющие короткозамкнутый ротор, подключаются по схеме звезда или треугольник в зависимости от линейного напряжения, на которое рассчитана каждая обмотка.

При пуске особенно мощных эл. двигателей, подключённых по схеме треугольника, наблюдаются повышенные пусковые токи, которые в перегруженных сетях создают временное падение напряжения ниже допустимого предела.

Данное явление обусловлено конструктивными особенностями асинхронных эл. двигателей, у которых массивный ротор имеет достаточно большую инерционность, и при его раскрутке мотор работает в режиме перегрузки. Пуск электродвигателя усложняется, если на валу находится нагрузка с большой массой – роторы турбинных компрессоров, центробежных насосов или механизмы различных станков.

Способ уменьшения пусковых токов электродвигателя

Чтобы уменьшить токовые перегрузки и падение напряжения в сети, применяют особый способ подключения трехфазного эл. двигателя, при котором происходит переключение со звезды на треугольник по мере набора оборотов.


Подключение обмоток двигателя: звездой (слева) и треугольником (справа)

При подключении соединенных звездой обмоток двигателя, рассчитанного на подключение треугольником в трехфазную сеть, напряжение, приведённое к каждой обмотке на 70% меньше от номинала. Соответственно, ток при пуске эл. двигателя будет меньшим, но следует помнить, что стартовый момент вращения также будет меньшим.

Поэтому переключение режимов звезда-треугольник нельзя применять для электродвигателей, изначально имеющих на валу неинерционную нагрузку, такую как вес груза лебедки или сопротивление поршневого компрессора.


Недопустимо переключение режимов у электродвигателя, стоящего на поршневом компрессоре

Для работы в составе таких агрегатов, имеющих большую нагрузку в момент пуска, применяют особые трехфазные эл. двигатели с фазным ротором, в которых пусковые токи регулируются с помощью реостатов.

Переключение звезда треугольник можно применять только для электродвигателей, имеющих на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого подобного оборудования.


Центробежный насос с асинхронным электродвигателем

Реализация смены режимов подключения обмоток двигателя

Очевидно, что для осуществления пуска трехфазного электромотора в режиме звезды с последующим переключением на соединение обмоток треугольником, необходимо применение нескольких трехфазных контакторов в пускателе.


Набор контакторов в пускателе для переключения звезда-треугольник

При этом нужно обеспечивать блокировку одномоментного срабатывания данных контакторов, а также должна быть обеспечена кратковременная задержка переключения, чтобы соединение звездой гарантированно отключилось прежде, чем включится треугольник, иначе произойдет трехфазное короткое замыкание.

Поэтому реле времени (РВ), которое используется в схеме для установки интервала переключения, также должно обеспечивать задержку 50-100 мс, чтобы не происходило короткого замыкания.

Способы осуществления задержки переключения


Диаграмма времени переключения режимов

Существует несколько принципов осуществления задержки при помощи:



Ручной переключатель режимов

Классическая схема

Данная система достаточно проста, неприхотлива и надежна, но имеет существенный недостаток, который будет описан ниже и требует применения громоздкого и морально устаревшего реле времени.

Данное РВ обеспечивает задержку отключения из-за намагниченного сердечника, на размагничивание которого требуется некоторое время.


Электромагнитное реле времени задержки

Необходимо мысленно пройтись по цепях прохождения тока, чтобы понять работу данной схемы.


Классическая схема переключения режимов с реле тока и времени

После включения трехфазного автоматического выключателя АВ пускатель готов к работе. Через нормально замкнутые контакты кнопки «Стоп», и замыкаемый оператором контакт кнопки «Пуск» ток протекает через катушку контактора КМ. Силовые контакты КМ удерживаются во включенном состоянии «самоподхватом», благодаря контакту БКМ.


На фрагменте приведенной выше схемы красной стрелкой указан шунтирующий контакт

Реле КМ необходимо для обеспечения возможности отключения двигателя кнопкой «Стоп». Импульс от кнопки «Пуск» также проходит через нормально замкнутые БКМ1 и РВ, запуская контактор КМ2, основные контакты которого обеспечивают подачу напряжения на соединение обмоток по типу звезда – осуществляется раскрутка ротора.

Поскольку в момент пуска КМ2 контакт БКМ2 размыкается, то КМ1, обеспечивающий включения соединения обмоток треугольником, никак не может сработать.


Контакторы, обеспечивающие подключение звездой (КМ2) и треугольником (КМ1)

Пусковые токовые перегрузки эл. двигателя заставляют практически мгновенно сработать РТ, включенное в цепи трансформаторов тока ТТ1, ТТ2. При этом цепь управления катушкой КМ2 шунтируется контактом РТ, блокируя работу РВ.

Одновременно с запуском КМ2 при помощи его дополнительного нормально разомкнутого контакта БКМ2 запускается реле времени, контакты которого переключаются, но срабатывания КМ1 не происходит, так как БКМ2 в цепи катушки КМ1 разомкнут.


Включение реле времени — зеленая стрелка, переключающие контакты — красные стрелки

По мере набора оборотов пусковые токи уменьшаются и контакт РТ в цепи управления КМ2 размыкается. Одновременно с отключением силовых контактов, обеспечивающих питанием соединение обмоток звездой, происходит замыкание БКМ2 в цепи управления КМ1 и размыкание БКМ2 в цепи питания РВ.

Но, поскольку РВ отключается с запаздыванием, этого времени достаточно, чтобы его нормально разомкнутый контакт в цепи КМ1 оставался замкнутым, благодаря чему происходит самоподхват КМ1,подключающий соединение обмоток треугольником.


Нормально разомкнутый контакт самоподхвата КМ1

Недостаток классической схемы

Если по причине неправильного расчета нагрузки на валу он не сможет набрать обороты, то и реле тока в этом случае не позволит схеме переключиться в режим треугольника. Длительная эксплуатация эл. асинхронного двигателя в таком режиме стартовой перегрузки крайне нежелательна, обмотки будут перегреваться.


Перегретые обмотки двигателя

Поэтому, для предотвращения последствий непредвиденного увеличения нагрузки при пуске трехфазного эл. двигателя (изношенный подшипник или попадание посторонних предметов в вентилятор, загрязнение крыльчатки насоса), следует также подключить тепловое реле в цепь питания эл. двигателя после контактора КМ (на схеме не указано) и установить датчик температуры на кожух.


Внешний вид и основные узлы теплового реле

Если используется таймер (современное РВ) для переключения режимов, которое происходит в установленном интервале времени, то при включении обмоток двигателя треугольником, происходит набор номинальных оборотов, при условии, что нагрузка на валу соответствует техническим условиям работы электромотора.


Переключение режимов при помощи современного реле времени CRM-2T

Работа самого таймера достаточно проста – вначале осуществляется включение контактора звезды, а по истечении регулируемого времени, происходит отключение данного контактора, и с некоторой также регулируемой задержкой осуществляется включения контактора треугольника.

Правильные технические условия для использования переключения соединений обмоток.

При пуске любого трехфазного эл. двигателя должно соблюдаться важнейшее условие – момент сопротивления нагрузки всегда должен быть меньше чем стартовый момент вращения, иначе электромотор попросту не запустится, а его обмотки перегреются и перегорят, даже если используется стартовый режим звезды, при котором напряжение ниже номинального.

Даже если на валу свободно вращающаяся нагрузка, стартового момента при подключении звездой может не хватить и эл. двигатель не наберет обороты, при которых должно осуществляться переключение в режим треугольника, так как сопротивление среды, в котором вращаются механизмы агрегатов, (лопасти вентилятора или крыльчатка наноса) будет увеличиваться по мере набора скорости вращения.

В таком случае, если из схемы исключено токовое реле, и переключение режимов осуществляется по уставке таймера, то в момент перехода на треугольник будут наблюдаться всё те же броски тока почти такой же продолжительности, как и при пуске с неподвижного состояния ротора.


Сравнительные характеристики прямого и переходного запусков двигателя с нагрузкой на валу

Очевидно, что такое подключение звезда-треугольник не даст никаких положительных результатов при неправильно рассчитанном стартовом моменте. Но в момент отключения контактора, обеспечивающего подключение звездой, при недостаточных оборотах двигателя, вследствие самоиндукции будет наблюдаться бросок повышенного напряжения в сеть, которое может повредить другое оборудование.

Поэтому, используя переключение звезда-треугольник, необходимо убедиться в целесообразности такого подключения трехфазного асинхронного эл. двигателя и перепроверить расчеты по нагрузке.

С вопросом регулировки оборотов приходится сталкиваться при работе с электроинструментом, приводом швейных машин и прочих приборов в быту и на производстве Регулировать обороты, просто понижая питающее напряжение, не имеет смысла - электродвигатель резко уменьшает обороты, теряет мощность и останавливается Оптимальным вариантом регулировки оборотов является регулирование напряжения с обратной связью по току нагрузки двигателя

В большинстве случаев в электроинструменте и других приборах применены универсальные коллекторные электродвигатели с последовательным возбуждением. Они хорошо работают как на переменном, так и на постоянном токе. Особенностью работы коллекторного электродвигателя является то, что при коммутации обмоток якоря на ламелях коллектора во время размыкания возникают импульсы противо-ЭДС самоиндукции Они равны питающим по амплитуде, но противоположны им по фазе. Угол смещения противо-ЭДС определяется внешними характеристиками электродвигателя, его нагрузкой и другими факторами. Вредное влияние противо-ЭДС выражается в искрении на коллекторе, потере мощности двигателя, дополнительном нагреве обмоток. Некоторая часть противо-ЭДС гасится конденсаторами, шунтирующими щеточный узел.

Рассмотрим процессы, протекающие в режиме регулирования с ОС, на примере универсальной схемы (рис 1). Резистивно-емкостная цепь R2-R3-C2 обеспечивает формирование опорного напряжения, определяющего скорость вращения электродвигателя.

При увеличении нагрузки скорость вращения электродвигателя падает, снижается и его крутящий момент. Противо-ЭДС, возникающая на электродвигателе и приложенная между катодом тиристора VS1 и его управляющим электродом, уменьшается. Вследствие этого напряжение на управляющем электроде тиристора возрастает пропорционально уменьшению противо-ЭДС. Дополнительное напряжение на управляющем электроде тиристора заставляет его включаться при меньшем фазовом угле (угле отсечки) и пропускать на электродвигатель больший ток, компенсируя тем самым снижение скорости вращения под нагрузкой. Существует как бы баланс импульсного напряжения на управляющем электроде тиристора, составленного из напряжения питания и напряжения самоиндукции двигателя. Переключатель SA1 позволяет при необходимости перейти на питание полным напряжением, без регулировки Особое внимание следует уделить подбору тиристора по минимальному току включения, что обеспечит лучшую стабилизацию скорости вращения электродвигателя

Вторая схема (рис 2) рассчитана на более мощные электродвигатели, применяемые в деревообрабатывающих станках, шлифмашинах, дрелях. В ней принцип регулировки остается прежним. Тиристор в данной схеме следует установить на радиатор площадью не менее 25 см2.

Для маломощных электродвигателей и при необходимости получить очень малые скорости вращения, можно с успехом применить схему на ИМС (рис 3). Она рассчитана на питание 12 В постоянного тока. В случае более высокого напряжения следует запитать микросхему через параметрический стабилизатор с напряжением стабилизации не выше 15В.

Регулировка скорости осуществляется путем изменения среднего значения напряжения импульсов, подаваемых на электродвигатель. Такие импульсы эффективно регулируют очень малые скорости вращения, как бы непрерывно "подталкивая" ротор электродвигателя. При высоких скоростях вращения электродвигатель работает обычным образом.

Весьма несложная схема (рис 4) позволит избежать аварийных ситуаций на линии железной дороги (игрушечной) и откроет новые возможности управления составами. Лампа накаливания во внешней цепи предохраняет и сигнализирует о коротком замыкании на линии, ограничивая при этом выходной ток.

Когда требуется регулировать обороты электродвигателей с большим крутящим моментом на валу, например в электролебедке, может пригодиться двухполупериодная мостовая схема (рис 5), обеспечивающая полную мощность на электродвигателе, что существенно отличает ее от предыдущих, где работала только одна полуволна питающего напряжения.

Диоды VD2 и VD6 и гасящий резистор R2 используются для питания схемы запуска. Задержка открывания тиристоров по фазе обеспечивается зарядом конденсатора С1 через резисторы R3 и R4 от источника напряжения, уровень которого определяется стабилитроном VD8 Когда конденсатор С1 зарядится до порога срабатывания однопереход-ного транзистора VT1, он открывается и запускает тот тиристор, на аноде которого присутствует положительное напряжение. Когда конденсатор разряжается, однопереходный транзистор выключается. Номинал резистора R5 зависит от типа электродвигателя и желаемой глубины обратной связи. Его величина подсчитывается по формуле

где Iм - эффективное значение максимального тока нагрузки для данного электродвигателя Предлагаемые схемы хорошо повторяемы, но требуют подбора некоторых элементов в зависимости от характеристик применяемого двигателя (практически невозможно найти подобные по всем параметрам электродвигатели даже в пределах одной серии).

Литература

1. Electronics Todays. Int N6

2. RCA Corp Manual

3. IOI Electronic Projects. 1977 p 93

5. G. E. Semiconductor Data Hand book 3. Ed

6 .Граф P. Электронные схемы. -М Мир, 1989

7. Семенов И. П. Регулятор мощности с обратной связью. - Радиолюбитель, 1997, N12, С 21.

Вытекает, что регулирование скорости вращения асинхронных электро­двигателей можно осуществить:

изменением частоты питающего тока;

изменением числа «ар полюсов обмотки статора;

введением дополнительных сопротивлений в цепь обмотки ротора.

Первые два способа используются для регулирования скоро­сти вращения электродвигателей с короткозамкнутым ротором, а последний - электродвигателей с фазным ротором (с кон­тактными кольцами).

Регулирование скорости вращения изменением частоты пи­тающего тока используется очень редко, так как этот способ применим лишь в случае, когда электродвигатель питается от отдельного генератора. В этом случае для регулирования скоро­сти необходимо менять скорость вращения питающего генератора в такой же пропорции, е какой должна меняться скорость регулируемого электродвигателя. Бели же электродвигатель пи­тается от сети трехфазного тока, то осуществить регулирование его скорости изменением частоты невозможно. На практике ре­гулирование скорости изменением частоты применяется лишь в. гребных электрических установках переменного тока, в кото­рых мощные гребные электродвигатели получают питание от отдельных генераторов и поэтому частоту питающего тока мож­но регулировать произвольно.

Наиболее часто на практике применяется второй способ, позволяющий достаточно просто осуществлять ступенчатое ре­гулирование скорости вращения асинхронных электродвигателей с короткозамкнутым ротором. Если имеется возможность из­менять число пар полюсов обмотки статора [см. формулу (80) ] то, следовательно, имеется возможность ступенчатого регулиро­вания скорости вращения электродвигателя, так как число пар полюсов может быть равно 1, 2, 3 и т. д. Электродвигатели, до­пускающие переключение числа пар полюсов, должны иметь в пазах статора либо несколько независимых обмоток, либо од­ну обмотку со специальным переключающим устройством. Оте­чественная промышленность выпускает двух-, трех- и четырех- скороетные электродвигатели, используемые:в основном на морском транспорте и на некоторых кранах. Когда числа полю­сов значительно отличаются друг от друга, двух скор осиные электродвигатели изготовляются с двумя независимыми об­мотками. Одна, например, может быть выполнена на 2р = 2, а вторая на 2р = 8 полюсов. Тогда при подключении к сети пер­вой обмотки магнитное поле статора будет вращаться со скоростью n 1 = 60·50 / 1 = 3000 об /мин , а при подключении к сети второй обмотки - со скоростью n 1 = 60·50 / 4 = 750 об /мин . Соответствую­щим образом будет изменяться при этом и скорость вращения ротора n 2 = n 1 (1-s ).

Часто в пазы статора двухскоростного электродвигателя закладывают одну обмотку, но выполняют ее так, чтобы мож­но было включать ее при необходимости треугольником (рис. 49, а ) и двойной звездой (рис. 49, б ). При включении такой обмотки треугольником число полюсов равно 2р = 2а , а при вклю­чении двойной звездой 2р = а (где а - любое целое число), т. е. при переходе от треугольника к двойной звезде число пар по­люсов статорной обмотки уменьшается вдвое, а скорость элек­тродвигателя возрастает вдвое.

Регулирование переключением числа пар полюсов применя­ется только для электродвигателя с короткозамкнутым рото­ром, потому что у электродвигателей с фазным ротором одно

временно с переключением обмотки статора требуется переклю­чать и обмотку ротора, что усложняет конструкцию электродви­гателя и переключающего устройства. Данный способ регули­рования скорости отличается высокой экономичностью, но он не лишен и недостатков. В частности, регулирование скорости происходит не плавно, а скачками, требуется довольно сложное переключающее устройство, в особенности при числе скоростей большем двух; при переходе с одной скорости на другую раз­рывается цепь статора, при этом неизбежны толчки тока и мо­мента, коэффициент мощности при низших скоростях ниже, чем при высших из-за увеличения рассеяния магнитного потока.

Регулирование скорости введением дополнительных сопро­тивлений в цепь ротора возможно только у электродвигателей с фазным ротором. Согласно уравнению (97) , при введении раз­личных активных сопротивлений в цепь ротора жесткость ха­рактеристик изменяется (рис. 50), т. е. при одной и той же на­грузке скорость электродвигателя будет различной. Очевидно, чем выше величина дополнительного сопротивления, тем мягче искусственная характеристика и тем ниже скорость электродви­гателя.

Допустим электродвигатель работает с установившейся ско­ростью n 1 на естественной характеристике а в точке 1 , развития некоторый вращающий момент М 1 = М c . При введении в цепь ротора некоторого сопротивления R 1 электродвигатель перей­дет на работу по характеристике b , уравнение которой

Так как в момент включения сопротивления скорость электро­двигателя практически не изменится, переход с характеристи­ки а на характеристи­ку b произойдет по гори­зонтали 1 -2 , причем вра­щающий момент электро­двигателя снизится до М 2 , который меньше мо­мента сопротивления ме­ханизма М , поэтому ско­рость электродвигателя будет падать, а скольже­ние возрастать. При воз­растании скольжения мо­мент, согласно выраже­нию (92) , увеличивается до тех пор, пока момент электродвигателя вновь не станет равным момен­ту сопротивления ме­ханизма, после чего наступит равновесие моментов и двигатель будет вращаться с новой установившейся скоростью n 3 (точ­ка 3 ).

При необходимости дополнительно может быть включено сопротивление R 2 . Тогда скорость электродвигателя снизится до величины n 5 . При отключении сопротивлений скорость элект­родвигателя будет возрастать, при этом переход с одной харак­теристики на другую происходит в обратном порядке, как по­казано на рис. 50.

Последний способ позволяет получить широкий диапазон скоростей, но является крайне неэкономичным, так как при увеличении активного сопротивления цепи ротора растут потери энергии в электродвигателе, а значит уменьшается его к. п. д. Сами регулировочные реостаты, особенно для мощных электро­двигателей, получаются громоздкими и выделяют много тепла.

Необходимо также иметь в виду, что большинство электро­двигателей в настоящее время выполняется с самовентиляцией.

Вследствие этого при понижении скорости вращения охлаж­дение ухудшается и электродвигатель не может развивать но­минальный вращающий момент.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама