THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Всем привет! В сегодняшней статье пойдёт речь о светодиодных радиоуправляемых люстрах, а точнее – об такой её части, как светодиоды. Будет рассмотрена частая неисправность люстры, когда светодиоды перестают гореть. Будет и теория, и схема, и фото, и реальный ремонт.

Тема устройства и ремонта светодиодных люстр с пультом в интернете (и у меня на блоге) раскрыта достаточно широко, а вот информации по светодиодам и их подключению в люстре практически нет. Теперь точно будет)

Многоцветные (multi-color) можно разделить на два вида, по способу переключения цветов:

  1. Светодиоды без управления, с автоматическим переключением цветов. Переключение бывает быстрое и медленное, цветов два или три.
  2. Светодиоды с управлением, когда для включения того или иного цвета (2 или 3) нужно подать напряжение на нужный вывод светодиода. Напряжения, в зависимости от цвета могут быть разные – 2 или 3 Вольта.

Бывают светодиоды на напряжение 5В. В основном, это относится к двухцветным моделям. Тогда, применяется вот такой драйвер:

RB Synchronous double controller – драйвер на последовательные светодиоды 5 В

На этом драйвере написано “RB Synchronous double controller” . Количество светодиодов – 31-40 шт, напряжение на каждом – 5 В. Более подробно надписи и параметры подобных драйверов будут рассмотрены ниже.

Честно говоря, я не совсем разобрался с применение такого драйвера. Предполагаю, что он такой же, как и рассматриваемый в статье, только отличие в прямом напряжении, которое не 3В, а 5В. Кто может это подтвердить или опровергнуть – напишите, пожалуйста о своём опыте в комментариях.

Конкретной информации по по типам светодиодам в интернете мало, и использовать её трудно – ведь светодиоды прозрачные, и не имеют надписей. Остается только ориентироваться на описания у продавцов (ссылки будут в конце статьи). Либо выяснять опытным путем. Ниже, в части про ремонт, будет рассказано как.

В люстрах используются светодиоды с прозрачным круглым корпусом, диаметр – 5 (4,8) мм. Ещё особенность – светодиоды в люстрах без линзы, с укороченным корпусом, типа “соломенная шляпа”. У них широкая диаграмма направленности.

Светодиоды имеют проволочные выводы под пайку. Хотя, в люстрах их никогда не паяют, а вставляют прямо в разъем “мама”. Главное – соблюдать полярность.

Светодиодные лампочки в люстрах

Светодиодные лампочки в 99% – на напряжение 12 В переменного или постоянного тока. Чаще всего сейчас попадаются лампочки с универсальным питанием, на 12 VDC/VAC, которые питаются от электронного трансформатора на 12 В переменного тока. Такие трансформаторы (точнее, источники напряжения, или драйверы) гораздо дешевле, чем на постоянный ток.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

В связи с этим, можно вообще без переделки поменять галогенные лампочки на светодиодные. В случае, если в люстре применяется трансформатор с выходным напряжением 12 VAC.

Светодиодные лампочки, как правило, имеют разъем (точнее, цоколь) G4, который применялся в галогеновых лампах.

Почему “применялся” в прошедшем времени? Потому, что галогенки сейчас отмирают.

Такая лампочка показана на фото выше. Если кто не понял – прозрачный пузатик слева)

Параллельное или последовательное включение?

В комментариях у моих читателей часто возникает вопрос – параллельно или последовательно включены светодиоды в люстре? Часто, чтобы ответить на этот принципиальный вопрос, нужно узнать, о чем идёт всё-таки речь – о светодиодах или о светодиодных лампочках?

Можно уверенно сказать, что светодиодные лампочки включаются параллельно, и питаются от драйвера (источника напряжения) стабильного напряжения 12В. Так же и галогеновые и любые лампы. Не только в люстрах, но и всегда и везде.

Другая вещь – светодиодные матрицы, которые в люстрах не используются, а применяются в основном в прожекторах. Там для питания главное – стабильный ток.

И нечто среднее – драйвер, который делает из переменного напряжения постоянное, без всякой стабилизации напряжения и тока. Светодиоды к выходу такого драйвера подключаются последовательно, важно только, чтобы количество светодиодов было в определенных пределах. Именно такие и применяются в люстрах, для последовательного включения.

Если вам встречалась люстра, где светодиоды подключались параллельно, поделитесь опытом в комментариях. Наверное, это какие-то специальные светодиоды.

Ладно, хватит теории, теперь самое интересное –

Перестали гореть светодиоды в люстре

Разберем для начала

Устройство люстры, в которой не горят светодиоды

Люстра такая:

В данном случае имеем простейшее устройство: люстра на 2 группы, 1-я группа – на 220В (4 лампочки Е14), вторая группа – 21 синий светодиод. Светодиоды включены последовательно, через драйвер, устройство и схема которого будет приведена ниже.

Контроллер, который управляет люстрой по сигналам с пульта, такой:

Мало того, что контроллер Ноунейм, так и на этикетке на схеме полный бардак, должно быть по выводам так:

  1. красный – фаза питания,
  2. черный – ноль питания,
  3. черный – ноль нагрузки (оба провода равнозначны),
  4. белый – выход фазы на нагрузку 1,
  5. желтый – выход фазы на нагрузку 2.

Ну, если уж совсем быть брюзгой – в слове “sacing” третья буква не та.

Если на люстре перестала работать светодиодная подсветка, то в первую очередь нужно убедиться, что контроллер выдает питание 220В на драйвер светодиодов. Такие контроллеры легко поддаются ремонту, читайте мою статью про . Там же – обмен опытом среди соратников.

Драйвер последовательного соединения светодиодов

На корпусе этого простейшего устройства – гордая надпись LEDDRIVER.

Вообще китайцы любые преобразователи питания именуют драйверами, поэтому обольщаться не надо.

Посмотрим поближе, что на нём написано:

Разберём каждый параметр блока питания:

  • MHEN – торговая марка. Идентичные устройства выпускаются под брендами Jindel, ALED, Junyi, Jing Yi, и под другими труднопроизносимыми названиями.
  • LED DRIVER – водитель диода, как переводит автоматический переводчик. Может быть написано LED Controller.
  • 21-30 pcs – количество светодиодов, которое можно подключать последовательно к этому устройству.
  • Model : GEL-11101A – модель, также она указана на плате.
  • Input : AC220-240 V 50 Hz. Тут должно быть всё понятно.
  • Current : DC 60mA Max. Это максимальный ток, который никак не стабилизируется, его стабилизируют светодиоды, подключенные к выходу. Подробнее, как так происходит, я писал в статье про .
  • Output : Establish DC 3,0-3,2V. Фактически, это напряжение на одном светодиоде, когда включено количество в указанных пределах (21-30 шт.).
  • LED 30 pcs Max – максимальное количество светодиодов.
  • Ta, Tc – температура окружающей среды и корпуса устройства.
  • Jindel Electric – китайский производитель, специализирующийся на простой копеечной бытовой электронике.

Проверяем светодиоды

Светодиод на 3В – это не совсем обычный диод. Обычный диод можно прозвонить в прямом направлении мультиметром с установленным режимом “прозвонка полупроводников”, при этом показания будут около 800 Ом. При прозвонке светодиодов в прямом направлении светодиод горит, хоть и тускло. В обратном – не горит. Мультиметр при этом ничего не показывает. Точнее, показывает бесконечность, т.е. “1”.

Фактически, мультиметр при прозвонке – источник напряжения около 2В, и этого вполне хватает исправному светодиоду, чтобы подать признаки жизни.

Чтобы было совсем всё понятно, картинка:

Анод, на который подается “плюс” питания, длиннее катода, на который подается “минус”. На светодиоде слева схематически показан диод, чтоб было понятнее.

На анод подаём “плюс” мультиметра, на катод – “минус”. Таким образом, можно легко узнать и полярность светодиода, и его исправность, и цвет. А исходя из цвета, по таблице, приведенной выше, узнать рабочее напряжение.

В люстре, которую я ремонтировал, я начал прозванивать диоды, и понял, что их надо будет все менять. Некоторые показывали 2-3 ома в обоих направлениях, некоторые – 1000 Ом, некоторые – бесконечность. Результат неумелого ремонта. Даже, если 1 или 2 светодиода вышли из строя, стоит подумать о том, чтобы заменить все, т.к. параметры их неизбежно изменились (да, все мы стареем), а новые будут с другими параметрами.

В крайнем случае, 1 или 2 светодиода можно заменить перемычками или резистором, сопротивление которого посчитаем ниже. Перемычку можно ставить только в том случае, если оставшееся количество светодиодов не меньше того, что указано на драйвере. Иначе “везунчики” будут гореть недолго, зато ярко.

Как проверить светодиоды в люстре, нам также расскажет Елена:

Проверка драйвера питания последовательных светодиодов

В общем, светодиоды менять нужно все. А что же с драйвером?

Чтобы удостовериться в работе тандема драйвер+светодиоды, я собрал (спаял) такую яркую конструкцию:

Как вы видите, . Удобно и практично.

Итак, данные измерений такие.

Выходное напряжение драйвера (его устройство и его схема будут на десерт)) на холостом ходу (без нагрузки) – 305 В постоянного тока.

Подключаем нагрузку из 22 светодиодов (см.фото выше). Получаем – напряжение на выходе драйвера – 80 В , напряжение на каждом светодиоде – 80 / 22 = 3,63 В . По измерениям на каждом диоде примерно так и было. Как видим, напряжение немного завышено по отношению к номиналу (3,0…3,4В), ведь люстра должна светить ярко!

Подключаем теперь последовательно 30 светодиодов.

Пускаем ток по проводам:

Проверка 30 светодиодов, перед установкой в люстру

Результаты измерений. Напряжение на выходе драйвера – 107 VDC , на одном – 3,54 VDC .

То есть, в принципе, от такого драйвера можно питать и 40 диодов без заметного уменьшения яркости.

Всё, на другой день я поставил эти диоды с драйвером в люстру, хозяин доволен, я тоже.

Расчеты сопротивления источника и светодиодов

Спасибо нашему преподавателю схемотехники, Шибаевой Елене Михайловне.

Теперь для интереса посчитаем выходное сопротивление источника питания и сопротивления светодиодов. В расчетах участвуют – старый добрый Ом со своим знаменитым законом и формула делителя напряжения.

Итак, для случая на 30 светодиодов имеем:

  • Напряжение холостого хода источника тока – 305 В,
  • Напряжение источника тока под нагрузкой – 107 В,
  • Ток в цепи (да, ещё старина Кирхгоф со своим 1-м законом!) – 0,02 А.

Ток мы знаем из заявленных параметров диодов, но на эту цифру точно полагаться нельзя. Судя по напряжению на одном диоде, ток реально не много больше!

Чтобы расчеты были понятнее, прилагаю схему:

Предполагаем, что на вход схемы подается напряжение от идеального источника ЭДС с нулевым внутренним сопротивлением. Реальный источник электричества имеет внутреннее сопротивление Ri, которое мы сейчас посчитаем.

При измерении напряжения холостого хода Uн = Uхх = 305 В, поскольку входное сопротивление вольтметра гораздо больше внутреннего сопротивления источника Ri.

При подключении нагрузки Uн = 107 В, значит, напряжение, падающее на внутреннем сопротивлении источника Ri, равно 305 – 107 = 198 В .

Зная ток, посчитаем внутреннее сопротивление:

Ri = 198 В / 0,02 А = 9900 Ом.

Много это или мало? Всё познается в сравнении. В данном случае – в сравнении с сопротивлением нагрузки:

Rн = 107 В / 0,02 А = 5350 Ом.

Это – сопротивление последовательно соединенных светодиодов, когда через них протекает ток 0,02 А. Значит, сопротивление одного светодиода равно 5350 Ом / 30 = 178 Ом.

Значит, без изменения параметров схемы один светодиод можно заменить резистором 180 Ом. Это совпадает со значением, полученным опытным путем на одном светодиоде: 3,54 / 0,02 = 177 Ом.

Мы видим, что сопротивление источника электропитания больше сопротивления нагрузки. Значит – перед нами – источник тока. То есть, при изменении сопротивления нагрузки (количества светодиодов) в некоторых пределах ток почти не меняется.

Вопрос на засыпку. Почему, если рассчитанное сопротивление светодиода 178 Ом, тестер в режиме прозвонки (Омметр) не показывает никакого сопротивления? Ответ пишите в комментарии, буду рад знающим и сообразительным читателям!

Ладно, что-то мы отклонились от темы.

Теперь – обещанный десерт.

Устройство и схема драйвера светодиодной люстры.

Схемы драйверов на светодиодные светильники . Там это – стабилизированные источники тока.

Для светодиодов как раз и нужен ток, то есть источник с большим выходным сопротивлением. Если светодиод подключить к источнику напряжения (у которого выходное сопротивление гораздо ниже сопротивления диода), то ток после некоторого напряжения будет Очень быстро возрастать, пока диод не сгорит.

Я так спалил диод на лабораторной работе по физике на 2-м курсе)

А данный драйвер – простейшее устройство, я такие паял в 7-м классе, в радиокружке. Источником тока его можно назвать с большой натяжкой, из-за того, что его выходное сопротивление больше либо равно сопротивлению нагрузки. Это мы посчитали выше.

Вскрываем, и видим незатейливую плату без единого активного элемента:

Коричневые бочонки – это балластные (ограничительные) конденсаторы. Они на рабочее напряжение 400 В, емкость на 0,33 мкФ:

На корпусах написано соответственно 334 и 824. Что это означает – поищите “Обозначения цифро-буквенные на конденсаторах”. Я писал об этом в статье по ремонту контроллера люстры с пультом, ссылка выше.

Вид со стороны пайки:

Если нужно немного поднять напряжение на выходе драйвера под нагрузкой (т.е. уменьшить его выходное сопротивление, см. часть статьи с расчётами), то можно поднять ёмкость конденсатора фильтра до 10…20 мкФ. Тогда количество светодиодов можно будет немного увеличить.

А если нужно уменьшить количество светодиодов в люстре (например, часть перегорела), то можно уменьшить емкость балласта, убрав один из конденсаторов С1, С2. Это экспериментально.

Галогенные лампы широко применяют в офисах, в магазинах, для создания интерьерного освещения в быту. Но они имеют свои недостатки, это небольшой ресурс, необходимость применять трансформатор понижающий напряжение до 12 В, высокое потребление электричества, они потребляют его немного меньше, чем обычные лампы накаливания, а также они выделяют много тепла.

В последнее время промышленность стала выпускать большое количество светодиодных ламп с такими же параметрами как у галогенных ламп, с той же колбой, цоколем. Это в основном лампы с цоколем GU5.3 и GU10 мощностью не более 3W, тогда как ее аналог, галогенная лампа, потребляет 15W и имеет небольшой срок службы максимум 25 тысяч часов.

Для работы галогенной лампы необходимы теплоотводящие радиаторы и электроника, стабилизирующая и выравнивающая ток и еще трансформатор. Также они имеют низкие потребительские параметры, плохую светоотдачу.

Рассмотрим наиболее оптимальный вариант замены галогенных ламп на светодиодные, которые за счет более совершенной, инновационной системы отвода тепла отличаются большей мощностью излучения, при этом их электронная часть поставляется как отдельный блок питания, он легко может быть скрыт в подвесном потолке, да и один такой блок может использоваться для трех модулей со светодиодами. Такой способ позволяет добиться серьезных успехов, практически все галогенные лампы можно поменять на светодиодные без потери качества светового потока, при этом все затраты окупаются достаточно быстро.

Для замены можно купить набор из трех LED-модулей с тремя светодиодами по 3 Вт на модуль и с блоком питания KIT/3OSP3/B. Он отлично подходит для замены галогенной лампы типа MR16-GU5.3-20W. Размер одного модуля позволяет без проблем заменить лампу при этом не меняя светильник. Кроме галогенной лампы нужно снять понижающий трансформатор, патрон.

Срок службы светодиодов составляет не менее 50 тысяч часов, потребление электричества на несколько ватт меньше. При работе освещения в течении восьми часов затраты на электричество при эксплуатации светодиодной лампы не превысят 9 кВт/ч за год, галогенный аналог потребляет почти 60 Вт.

Данный способ замены галогенных ламп на светодиодные имеет еще несколько преимуществ, например, модули можно покупать отдельно, без блока питания. Это имеет смысл в том случае если стоит понижающий трансформатор 12В, и его нет необходимости менять. В таком случае необходимо использовать специальный драйвер, стабилизатор тока, он работает при напряжении 12-24В.

Галогенный трансформатор скорее можно назвать преобразователем напряжения и без преобразователя тока, драйвера, он будет выдавать переменное напряжение, а не постоянное, необходимое для питания светодиодов. Если его не использовать, то в течении половины периода импульс на светодиодах будет отсутствовать, а яркость значительно падать.

Все модули производятся минимум в двух вариантах цветовой температуры 3 и 6 тысяч К, а некоторые и в RGB-версии. В том случае если необходимо производить замену электрического кабеля, при замене галогенных светильников на светодиодные, можно выбрать более дешевый, меньшего сечения кабель, поскольку LED-источники света потребляют мало электричества.

Сейчас на рынке продаётся большое количество люстр с галогеновыми лампами 12v и всё бы хорошо, но некоторые хотят сэкономить на электроэнергии или предпочитают нейтральный белый свет жёлтому. Казалось бы, всё просто, нужно купить светодиодные лампы с таким же цоколем, как у галогенных ламп, установить их и люстра будет прекрасно работать. Но здесь кроется одна проблема, которая всплывает после установки светодиодных ламп. Давайте разберёмся, как обойти проблемы при замене ламп.

Почему установить светодиодные лампы непросто?

Сразу хочу написать, что всё, что описано в этой статье имеет отношение лишь к люстрам, в которых используются галогеновые лампы с рабочим напряжением 12в.

Дело в том, что в люстрах с лампочками на 12 вольт, используются трансформаторы (или блоки питания, называйте как хотите), которые преобразуют переменный ток 220 вольт нашей электрической сети в переменный ток 12 вольт, который нужен для галогеновых лампочек. При этом напряжения на выходе не стабилизировано. А для светодиодных ламп нужно стабилизированное постоянное напряжение. Уже этот факт у многих вызывает проблемы. Например, возможны мерцания светодиодных ламп заметных человеческому глазу, что случилось и в моём случае. Поверьте, это неприятно.

Вторая проблема, с которой вы можете столкнуться, может возникнуть из-за низкого энергопотребления светодиодных ламп. Дело в том, что некоторые трансформаторы автоматически отключаются, если потребляемая нагрузка слишком мала, а это как раз наш случай. Например, мощность одной галогеновой лампы, больше чем мощность десяти светодиодных ламп (мощность галогеновой лампы – 20 ватт, а светодиодной – 1,5 ватт). В моём случае такого не произошло, но не пугайтесь, если после замены ламп, люстра будет гаснуть или мигать.

И третья проблема, с которой столкнулся я, очень странная, но будьте готовы к такому повороту событий. Дело в том, что у меня люстра с пультом управления, и когда я поменял все лампы на светодиодные, то пульт управления мог только включить лампы, а погасить или поменять режим - нет. В общем можно сказать, что пульт работать перестал. Как только я вернул несколько галогеновых ламп (только часть) на место, пульт заработал (на картинке видно, что галогеновые лампы дают жёлтый свет). Я думаю, это происходит опять из-за недостаточной нагрузки.

Замена трансформаторов

Случай со смешанным типом ламп мне не подходит, поэтому я решил, заменить трансформаторы галогеновых ламп на блоки питания для светодиодных ламп. Я открыл люстру и обнаружил внутри 3 трансформатора для галогенных ламп (один трансформатор 160 ватт на одну группу ламп и два других на вторую группу ламп), 1 блок управления и 1 блок для управления за светодиодной подсветкой (люстра может мигать красным и синим светом).

Теперь нужно подсчитать суммарную нагрузку на блок питания. У меня в люстре есть две группы ламп 8 и 9, при мощности светодиодной лампы 1,5 ватт, получается, соответственно, 12 и 13,5 ватт. Также помните, что после установки блока питания ни в коем случае нельзя вставлять в люстру галогеновые лампы!

Я приобрёл в магазине пару источников постоянного напряжения 12 в Navigator выдерживающих нагрузку до 15 ватт и подходящих мне по габаритам (поместятся внутрь люстры), см. картинку. Кроме основной функции такой блок питания защищает от короткого замыкания, скачков напряжения и перегрузки.

Затем я выпаял провода из трансформаторов (см. первое фото снизу), поскольку раскручивать скрутки мне не хотелось, и подключил их к блокам питания Navigator , через клеммные колодки (см. второе фото снизу). Если выпаять провода вы не можете, по какой либо причине, то можно просто перекусить провода.

После того как я заменил трансформаторы галогеновых ламп на блоки питания для LED ламп, я избавился от двух проблем: светодиоды перестали мерцать и люстра стала исправно работать с пульта управления. В итоге внутренности моей люстры стали выглядеть так.

И всё это естественно уместилось внутри люстры.

Внешний вид люстры со светодиодными лампами

В моей люстре используются цоколи G4 и я нашёл светодиодные лампы почти схожего размера с галогенными. Это лампочки LUNA LED G4 1.5W 4000K 12V в силиконовом корпусе.

По размеру эта светодиодная лампочка немного больше, чем галогеновая. И кому то может не понравиться, как выглядят плафоны в выключенном состоянии, но мне показалось нормально. Ниже на фотографиях вы можете увидеть, как выглядит плафон с галогеновой лампой и светодиодной.

А когда люстра включена, вы по любому не увидите, светодиоды горят или галогенные лампы.

Стоит ли менять галогеновые лампы на светодиодные лампы?

Итак, подведём итог все проделанной работе. Итого на модернизацию люстры я потратил 2053,50 руб. (17 LED ламп по 80 руб. + доставка 100 руб. + источники постоянного тока 593,50 руб.) и пару часов работы. И теперь моя люстра стала энергосберегающей и светит нейтральным белым светом, как я и хотел. Для меня решающим фактором стал цвет, а другим может понравиться экономичность (25,5 Вт в сумме для светодиодов против 340 Вт для галогенок) и время жизни светодиодов (30000 часов для светодиодов против 4000 часов для галогенных ламп). Но учтите, что галогеновая лампа 20 ватт светит примерно в два раза ярче, чем светодиодная лампа 1,5 ватт (300-440 люмен для галогеновых ламп 20 ватт против 150-230 люмен для светодиодных ламп 1,5 ватт). Если яркости не хватает, можно использовать более мощные лампы, например, 2,5 ватт, но физический размер таких ламп будет больше. Это нужно учитывать, т.к. лампа должна поместиться внутрь плафона.

В настоящее время стали довольно популярны китайские люстры с пультом ДУ. Но, к сожалению, их надёжность оставляет желать лучшего.

Здесь я покажу на реальном примере, как можно доработать такую люстру. Сделать её более долговечной, надёжной и безопасной.

Данный материал будет полезен всем тем, кто дружит с электроникой. Здесь нет пошаговых инструкций, но в то же время показан наглядный пример того, как можно улучшить уже имеющуюся люстру. Умение паять и разбираться в схемах очень приветствуется, так как даже такой, казалось бы, простой материал оказалось трудно объяснить простым языком. Итак, начнём.

Принесли на ремонт китайскую люстру Sneha 85653/9+45A . "Sneha" созвучно с одним похабным словом, но, если к этому изделию приложить прямые руки, то получится "конфетка".

Владелец обнаружил оплавление корпуса одного из электронных блоков люстры и поэтому решил снять её из-за боязни возгорания. Просили сделать что-нибудь, чтобы люстру можно было эксплуатировать без опаски.

После того, как беспроводной переключатель (Wireless Switch Y-7E) был починен, люстра стала работать исправно. Казалось бы, полдела сделано. Осталось решить проблему с LED Transformer"ом, который очень сильно грелся, и люстру можно отдавать. Но, что-то подсказывало, что это лёгкое и недолговечное решение.

Была поставлена задача доработать люстру, а, именно, полностью избавиться от источников питания на балластном конденсаторе, которые используются для питания беспроводного переключателя Y-7E и светодиодного светильника.

Для наглядности начеркал простенькую структурную схему, на которой показаны основные блоки и узлы люстры с ПДУ. Красными крестиками отметил те блоки, от которых в процессе переделки необходимо избавится или заменить.

Так как подписи к блокам делал на английском (так короче), то кратко расскажу о каждом:

Wireless switch - Беспроводной переключатель. В нашем случае это модель Y-7E с тремя каналами управления (3 way).

Электромагнитные реле (Relay ), которые и включают нагрузку легко обнаружить внутри корпуса этого блока. RF - это радиоприёмная часть, которая принимает посылки от ПДУ. На печатной плате Wireless switch этот блок выполнен отдельно и выглядит так.

Decoder - это микросхема дешифратор HS153SPJ. Она декодирует посылки с пульта ДУ и включает/выключает соответствующее реле.

Power Supply - это источник питания. В данном случае он собран по схеме источника питания с гасящим (балластным) конденсатором. Это самая ненадёжная часть всей схемы , которая является причиной некорректной работы люстры спустя 1,5 - 2 года эксплуатации. Об этом мы ещё поговорим.

LED Transformer . Такое название ему, по-видимому, придумали для краткости. Могут обзывать и LED Driver , хотя этот блок состоит из обычного выпрямительного диодного моста и балластного конденсатора, который "гасит" излишки сетевого напряжения 220V, понижая его до нужного уровня. Тоже является ненадёжной частью схемы . Из-за такого схемотехнического решения светодиоды в люстре выходят из строя очень быстро.

Вот схема этого блока. Сведена с печатной платы вручную.

А вот и начинка. Не трудно заметить, что резистор (показан стрелкой) очень сильно греется.

Данный резистор, служит для ограничения тока через светодиоды. Именно из-за него и оплавился пластиковый корпус LED Transformer"а. Обратите на надпись "LED Driver" на корпусе. Как уже говорил, драйвером здесь и не "пахнет". Вместо него применена простейшая схема и минимум деталей.

Чтобы оплавить такой пластик нужна температура градусов 100~150 0 С, а то и больше. Становится страшно , когда такое чудо техники висит под потолком!

Чтобы избавится от этого блока, я решил заменить его обычным блоком питания с понижающим трансформатором. Об этом я ещё расскажу.

LED Lamp . Эту часть люстры я называю светодиодный светильник, хотя это просто несколько десятков светодиодов, которые соединены по определённой схеме.

В той люстре, которая оказалась в моих руках, светильник состоял из 45 светодиодов. Но, к моему удивлению, они не были соединены последовательно, как это обычно делается в китайских люстрах. На каждый из 9 плафонов люстры приходилось по 5 светодиодов, включенных последовательно.

Затем эти 9 веток соединялись параллельно и подключались к LED Transformer"у. Вот схема соединений для тех, кто в них сечёт.

Как уже упомянул, светодиодный светильник во многих люстрах собирается по другой схеме.

Все светодиоды в ней соединены последовательно, друг за другом. Их количество может достигать 50-ти и более штук. Благодаря этому, в LED Transformer"е для ограничения тока устанавливается резистор меньшего сопротивления, а ток, который протекает через него, не превышает 20~30 mA. Из-за этого на ограничительном резисторе выделяется небольшая мощность, которая не приводит к его чрезмерному нагреву.

В данной же люстре светодиоды включены параллельно по 5 штук на каждую ветку. Через каждую ветку протекает ток в 20~30 mA. А так как при параллельном включении ток разделяется, то суммарный ток, потребляемый всеми светодиодами светильника, уже составляет 180~270 mA. Кроме того, резистор гасит куда большее напряжение, так как при такой схеме соединений, напряжение питания светодиодного светильника составляет 15...16V. При последовательном соединении большая часть сетевого напряжения "падает" на светодиодах, так как их количество велико, и все они включены последовательно.

Судя по всему, такая реализация соединения светодиодов и привела к сильному нагреву резистора в LED Transformer"е и его корпус начал оплавляться.

Так как напряжение на входе LM78L12 было уже 24V, то стабилизатор очень сильно грелся . Для тех, кто не в курсе, скажу, что чем большее напряжение гасится на стабилизаторе (в моём случае это 12V), тем большая мощность выделяется на нём самом. Он сильнее греется.

Если помножить потребляемый ток беспроводного переключателя, который в максимуме составляет около 0,1А на 12V, которое "падает" на стабилизаторе LM78L12, то мы получим мощность в 1,2 Вт. Она выделяется в виде тепла.

Чтобы отвести эту мощность со стабилизатора (охладить его) требуется радиатор. Тогда вместо миниатюрного LM78L12ACZ в корпусе TO-92 я взял версию KA7812 в корпусе ТО-220 с фланцем и прикрепил к нему небольшой радиатор. Посчитал, что этого будет достаточно. Получилась вот такая штука. Даже в корпусе идеально убиралась.

Но, как оказалось, все мои старания оказались тщетны . Даже с радиатором стабилизатор очень сильно грелся. Для сведения, если палец жжёт, что аж держать нельзя, то температура явно больше 50~60 0 С. При 60~70 0 С уже можно получить ожог, начинается денатурация белка.

Да, можно прикрутить радиатор побольше, но вот как это потом втиснуть в маленький корпус, а затем ещё поместить в то небольшое пространство между люстрой и потолком? Поэтому, решил отказаться от идеи со стабилизатором .

На помощь пришёл регулируемый DC/DC преобразователь на микросхеме LM2596S. Это так называемый Step Down преобразователь, т. е. понижающий.

Вообще, наличие токоограничительного резистора в цепи со светодиодами хорошо влияет на их надёжность. Благодаря резистору через светодиоды протекает ток в 15...25 mA, что является для них оптимальным. Если глянуть даташит на большинство белых 3-ёх вольтовых светодиодов, то номинальный ток для них составляет 30 mA.

Перед тем, как окончательно монтировать резисторы, я собрал тестовую схему на макетке и измерил ток через светодиоды. Устанавливал разные резисторы с сопротивлением 300, 470 и 510 Ом.

В итоге остановился на номинале в 510 Ом, так как этих резисторов у меня как раз хватило на 9 веток. Мощность рассеивания резисторов должна быть от 0,25 Вт и выше. Я установил на 0,5 Вт. При этом на светодиодах "падало" напряжение в 3...3,1V, а ток через них составлял всего 10 mA. При длительном включении светодиоды оставались холодными.

Такой режим обеспечит длительную работу светодиодного светильника, даже если будут кратковременные скачки напряжения в электросети. Блок питания то у нас, всё-таки, нестабилизированный.

В процессе этого небольшого эксперимента убедился в том, о чём давно слышал. Через некоторое время после включения, ток через светодиоды немного увеличивается где-то на 5 mA. Светодиоды как бы разогреваются и сопротивление их немного падает. Это и приводит к росту тока через них.

Перед тем, как подключать светодиодную часть к беспроводному переключателю, на его печатной плате необходимо провести кое-какие изменения.

Первое, это электрически отсоединить выводы контактной группы того реле, которое будет включать светодиодную часть. Это можно сделать, просто перерезав печатную дорожку, которая соединяет выводы от контактов всех реле. Это общий провод 220V.

Здесь главное не допустить ошибки, так как два реле коммутируют сетевое напряжение 220V (на электронные трансформаторы галогенок), а светодиодный светильник запитывается напрямую от блока питания постоянным напряжением в 24V. Если допустить оплошность, то на светодиодную часть можно по ошибке подать сетевое напряжение в 220V!

Немного пояснений о перемычке, которая обозначена на фото. Чтобы не тянуть плюсовой провод, с которого запитывается светодиодная часть, на реле я кинул перемычку с общего провода, минуса.

Блок питания, DC/DC-модуль и беспроводной переключатель имеют общий минусовой провод. Поэтому, минус питания, который идёт на светодиодный светильник, я решил пустить через реле, а плюс 24V с блока подключить напрямую. Так я избавился от лишнего провода, который пришлось бы тянуть внутрь беспроводного переключателя и подпаиваться к выводам реле.

На работу светильника это никак не сказывается, просто цепь разрывается по минусовому проводу питания, а не по плюсу.

Вот схема соединений, чтобы было более наглядно, что должно получиться. Синим цветом обозначены цепи под сетевым напряжением 220V. Как видим по схеме, это напряжение подаётся через реле на галоненные светильники.

DC/DC Converter - это наш модуль DC/DC Step Down преобразователя. На вход подаём 24V от сетевого блока питания (AC/DC Adapter). С выхода DC/DC-модуля 12V подаём на беспроводной переключатель (Wireless switch).

На схеме я также указал электролитический конденсатор С1 ёмкостью 2200 мкФ и на рабочее напряжение 35V. Он нужен для того, чтобы при включении галогенных ламп светодиодный светильник не моргал.

Дело в том, что при включении электромагнитных реле, ток потребления беспроводного переключателя возрастает. При этом напряжение на выходе блока питания (AD/DC Adapter) скачкообразно проседает с 22...23V до 20...21V. Это происходит из-за того, что блок питания у нас нестабилизированный, и с ростом нагрузки напряжение на его выходе проседает.

Скачок напряжения приводит к тому, что светодиоды в светильнике в момент включения других реле (например, каналов B или С) кратковременно моргают.

Припаял его ко входу данного модуля. После такой доработки моргание исчезло.

Фото проверки люстры перед окончательной сборкой.

Проверяем все режимы.

Упс. Одна галогенка не светит. Придётся заменить.

Закончив тестирование люстры после переделки можно окончательно изолировать все электрические соединения.

Ограничительные резисторы в светодиодном светильнике я обжал термоусадочной трубкой, отрезки которой я заранее надел на провода ещё до соединения резисторов и проводов от светодиодов.

Соединительные провода, которые подключаются к электросети 220V, напаял на контактные штыри сетевой вилки блока питания. Сюда же припаял другие провода, которые идут на реле беспроводного переключателя. Затем всё это обжал термоусадкой в два слоя. На выводы сетевых проводов, которыми люстра подключается к электросети, установил соединительную колодку.

В процессе доработки люстры не забывайте о правилах электробезопасности !

Подключать китайскую люстру с пультом ДУ к электропроводке лучше через обычный сетевой выключатель. При необходимости, её можно полностью обесточить. Это может понадобиться, когда отлучаетесь из дома на несколько дней, а также даёт возможность выключить электронику люстры во время летней грозы.

Модернизация люстры путем замены светодиодных ламп вместо галогенных, наиболее простая и экономически обоснованная процедура.

Что на что меняем

Галогенная (галогеновая?) лампа . Галогенки действуют по принципу ламп накаливания. В них свет излучает раскаленная вольфрамовая нить. Внутренняя полость колбы заполняется специальным химическим составом, предотвращающим быстрый износ спирали и выхода изделия из строя.

В быту питаются от 12-24 вольтовых источников тока. Используются совместно с электронными преобразователями (трансформаторами), понижающими напряжение до необходимой величины.

Светодиодные лампы . Это сборки из массива полупроводниковых элементов, способных светиться под действием электрического тока. Все излучатели соединяются последовательно-параллельно между с собой и рассчитаны на определенные параметры питания.

Светодиоды функционируют только от постоянного тока. Для того, что подогнать стандартную бытовую сеть под заданные значения, используют специальные электронные устройства – драйверы.


Технические аспекты установки светодиодов вместо галогенок

Процесс монтажа в люстру светодиодных ламп вместо галогенных, сводится к изменению схемы питания. Приведем несколько решений.

Вариант 1

Полная замена источников питания. Это самый затратный вариант модернизации, но и максимально надежный.

Из корпуса светильника удаляют трансформаторы и вставляют преобразователь постоянного тока для LED. Его мощность должна превышать совокупную мощность всех ламп в 1,5 раза. В больших люстрах могут быть несколько контуров, каждый из которых — отдельный режим работы (люстры с дистанционным управлением). В таком случае понадобится отдельный драйвер для каждого контура.


Также, если одним устройством обойтись не получается, можно 1 контур разделить на группы и запитать каждую отдельным драйвером. При этом, вход всех блоков подключается параллельно: фазные провода собираются в один узел, нулевые – в другой.

Удобно применять для подключения промежуточные клеммники, но они должны обеспечивать надежный электрический контакт. Хорошо зарекомендовали себя соеденители компании WAGO.

Если это ваш вариант, в конце статьи будет видео, где подробно показано как менять галогенки на светодиоды в люстрах с несколькими контурами.

Вариант 2

Самый простой. Замена галогенных ламп в люстре на светодиодные со встроенными выпрямителями, работающими от того же напряжения, что и в первоначальном варианте.

Здесь, вообще, не нужно будет проводить каких-либо работ – достаточно будет поставить диоды с таким же цоколем на место галогенок. Узнать, что перед вами требуемый тип светодиодных ламп можно по маркировке. Буквенное обозначение AC/DC .

Недостаток метода – недостаточная освещенность из-за падения напряжения на внутреннем мосту. Яркость можем повысить за счет увеличения мощности.


Вариант 3

Выбираются модели LED-ламп, работающие от 220 вольт. Их подключение производится параллельно, от бытовой сети. Требуется извлечь понижающие трансформаторы и напрямую питать лампы Других вспомогательных устройств не нужно.

Важно! Если люстра работала на 12-вольтовых галогенках, а ставим леды с номинальным напряжением 220V (со встроенным драйвером), то следует быть готовым к замене соединительных кабелей в люстре. Если они не рассчитаны на такой ток в лучшем случае мы их просто спалим, в худшем — утроим пожар.


Переделка люстры с галогенными лампами на светодиодные со встроенным драйвером

Тонкости замены галогеновых ламп на светодиодные

Что важно учесть при замене галогеновых ламп на светодиодные:

  1. Цоколь . Выбирать следует LED с таким же цоколем, что в оригинальной люстре.
  2. Проблемой может быть низкое энергопотребление светодиодных сборок . Отдельные модели электронных трансформаторов снабжены функцией автоматического отключения при малой нагрузке. С диодами люстра может мигать или не работать вообще. Решается удалением трансформатора с заменой на led драйвер.
  3. Направленность света LED ламп. Угол распространения светового потока у галогенок 360°, у светодиодов — зависит от конструкции. Выбирайте модели с линзами широкого рассеивания, желательно с матированным рассеивателем, иначе получите неравномерное освещение.
  4. Помните про конструкцию плафона при выборе светодиодных лампочек. Led лампа может не поместиться в прежнее посадочное место или будет выступать и выглядеть неэстетично.
  5. Цветовая температура светодиодных ламп. Большинство LED светят холодным белым светом (4000К — 6000К) их нежелательно ставить в детские. Для гостиной или рабочего кабинета — отличный вариант.

Целью переоснащения люстр служит экономия электричества. Стоит понимать, что модернизация одного источника света окупится не раньше чем через два-три месяца (для комнат с постоянным использованием освещения). Эффективней провести перемонтаж сразу нескольких участков жилого помещения.

Выбирая полупроводниковые светильники не нужно экономить. Скупой платит дважды. Дешевое изделие, выпущенное неизвестным производителем чаще низкого качества и быстро приходит в негодность.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама