THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Сущность изобретения: способ предусматривает разделенное формирование постоянной составляющей асимметричного тока в цепях выпрямления переменного тока и переменной составляющей - в резонансном индуктивно-емкостном контуре, подкачиваемом на частоте выпрямления тока, при суммировании обеих составляющих этого тока непосредственно в цепи заряда аккумуляторов. Устройство содержит источник электрической энергии переменного тока, выпрямитель и зарядно-разрядные двух обмоточный дроссель-трансформатор и конденсатор, который подключен через одну обмотку дросселя-трансформатора к выводам батареи непосредственно, а другая обмотка этого дросселя трансформатора подключена к той же батарее через источник энергии и выпрямитель, при этом обе обмотки дросселя-трасформатора соединены через зарядно-разрядный конденсатор последовательно-встречно. 2 с. п. ф-лы, 1 ил.

Изобретение относится к области электротехники, а именно к способам и устройствам для формовки (формировки) при заряде и подзаряде аккумуляторов и аккумуляторных батарей (АБ) при их эксплуатации. Оно может быть использовано в системах электроснабжения как стационарных, так и различных автономных объектов с применением форсированного заряда и разряда аккумуляторов импульсным асимметричным током (АТ). В настоящее время известны и широко применяются способы (методы) заряда аккумуляторов непрерывным и прерывистым пульсирующим, т.е. импульсным, в том числе асимметричным током. Эти же способы используются и при формировке активных масс электродов при производстве аккумуляторов. Простейшим способом заряда аккумуляторов при их формировании или при эксплуатации является заряд путем непосредственного их подключения к зарядному источнику (А. Е. Зорохович и др. Устройство для заряда и разряда аккумуляторных батарей. М. Энергия, 1975, 4.3, с. 74), однако такой заряд занимает много времени (порядка 10 ч) и при эксплуатации АБ приводит к увеличению резервного парка батарей (там же, 7.1, с. 186). В связи с этим разработаны и предложены различные способы форсированного, т.е. ускоренного формирования и заряда АБ. В случае заряда АБ импульсным пульсирующим током униполярными (то есть однополярными) импульсами частоты 50 и более герц время зарядного цикла сокращается минимум на 17% а расход энергии на 20% (там же, с. 191 и ссылка на л. 7 этой монографии). Физически это объясняется уменьшением ЭДС поляризации аккумуляторов при импульсном их заряде (и, соответственно, их внутреннего сопротивления) за счет уменьшения концентрационной поляризации (см. Дж. Вайнел. Аккумуляторные батареи. Изд. 4. М-Л. ГЭИ, 1960, 366 367 с.). Еще в большей степени ЭДС поляризации АБ можно уменьшить при заряде ее разнополярными импульсами со средним за период значением тока заряда, отличным от нуля. Ток в виде разнополярных импульсов в системах заряда АБ называют рефлексным или часто асимметричным током. Простейшим способом формирования АТ является наложение постоянной составляющей в виде отдельных импульсов (однополярных) на переменный, например, синусоидальной формы, либо на переменный прямоугольной и любой иной формы Поэтому в простейшем описанном в литературе способе заряда АБ АТ от источников электрической энергии переменного тока (ИПТ) Недостатком этой СЗ является необходимость использования двухили трехфазного ИПТ и весьма низкие удельные энергетические показатели устройства, обусловленные большими потерями энергии при омическом +ограничении зарядного тока и однополупериодном подмагничивании источника. Целью изобретения в способе заряда является улучшение удельных массогабаритных показателей систем заряда (зарядных устройств) путем их схемотехнического упрощения и потерь энергии в них. Целью изобретения в СЗ является упрощение схемы этой системы и улучшение ее удельных энергетических показателей. Поставленная цель в способе заряда аккумуляторов асимметричным током от источника переменного тока, при котором формируют постоянную составляющую зарядного тока в виде однополярных импульсов тока на частоте источника или двухкратной ей за счет выпрямления напряжения упомянутого источника, переменную составляющую тока путем поддержания вынужденных колебаний зарядно-разрядного тока аккумуляторов с одновременным ограничением его величины, а асимметричный ток получают суммированием постоянной и переменной составляющих одинаковой частоты непосредственно в цепи заряда аккумуляторов, достигается тем, что для поддержания указанных вынужденных колебаний используют часть зарядной электромагнитной энергии, полученной в тактах ограничения величины зарядного тока. Цель, поставленная в системе заряда аккумуляторной батареи асимметричным током, содержащей положительный и отрицательный выходные выводы для подключения заряжаемой аккумуляторной батареи, два входных вывода для соединения с выводами источника электрической энергии переменного тока, выпрямитель переменного тока, например управляемый мостовой, отрицательная выходная клемма которого соединена с отрицательным выходным выводом, а также зарядно-разрядные двухобмоточный дроссель-трансформатор и конденсатор, одна обкладка которого подключена к положительному выходному выводу непосредственно, а другая через одну обмотку зарядно-разрядного дросселя-трансформатора к отрицательному выходному выводу, другая обмотка зарядно-разрядного дросселя-трансформатора включена между положительным выходным выводом системы и положительной выходной клеммой выпрямителя, при этом упомянутые обмотки соединены через зарядно-разрядный конденсатор последовательно-встречно. На чертеже приведена принципиальная электрическая схема СЗ АБ АТ, реализующей заявленный способ заряда аккумуляторов асимметричным током от однофазного источника электрической энергии переменного тока с гармонической - синусоидальной формой его выходного напряжения. Она содержит положительную 1 и отрицательную 2 выходные выводы для подключения заряжаемой аккумуляторной батареи 3, два входные вывода 4 и 5, источник переменного тока 6, двухполупериодный мостовой выпрямитель 7, например, управляемый, клеммы входной диагонали которого образуют входные клеммы устройства, отрицательная выходная клемма 8 соединена с отрицательной выходной клеммой устройства 2, а положительная клемма 9 с одним выводом обмотки 10 токоограничивающего зарядного линейного дросселя-трансформатора, которую назовем зарядной, при этом положительная выходная клемма устройства соединена с одной обкладкой зарядно-разрядного конденсатора 11, другая обкладка которого соединена с выводом "разрядной" обмотки 12 линейного дросселя-трансформатора, свободный вывод обмотки этого зарядного линейного дросселя подключен к положительной выходной клемме устройства, а свободный вывод разрядной обмотки дросселя-трансформатора (ДТ) к его отрицательному выходному выводу, при этом обе обмотки расположены на одном магнитопроводе и объединены через зарядно-разрядный конденсатор (ЗРК) последовательно-встречно друг с другом. Обмотка 10, названная выше зарядной, образует цепь передачи энергии ИПТ 6 в АБ 3. По этой обмотке также часть энергии передается в обмотку 12, названную, для краткости, разрядной, т.к. она образует цепь разряда-заряда батарей, при которой энергия подразряда АБ 3 на ЗРК 11 возвращается в эту же батарею. Так как фарадеевская емкость аккумуляторов весьма велика (близка к Фараде), в цепи на соединенных последовательно ЗРК 11 и АБ 3 емкостью последней можно пренебречь, а поэтому условимся считать, что ЗРК 11 и разрядная обмотка 12 ДТ образуют последовательный индуктивно-емкостной контур, который настраивают на частоту источника 6 или на двухкратную ей. Очевидно, что частота этого контура (равная частоте импульсов выпрямленного тока) практически не зависит от фарадеевской емкости АБ 3. В предложенной системе формирование асимметричного переменного тока осуществляется путем наложения переменной составляющей тока на униполярные импульсы двухполупериодного выпрямителя. При рассмотрении принципа работы системы целесообразно рассмотреть отдельно цепи прохождения постоянной и переменной составляющих тока. При этом следует учесть два условия: 1. Начальное зарядное напряжение аккумуляторной батареи U знач составляет примерно 60 70% от конечного зарядного напряжения АБ. 2. При заряде АБ через обмотку 10 токоограничивающего линейного дросселя-трансформатора зарядный ток имеет следующий характер: а) непрерывный при зарядном напряжении U з <0,637 E m , где E m амплитудное значение напряжения источника; б) импульсный при U з > 0,537 E m . Учитывая первое условие, можно считать, что в реальных зарядных системах при заряде через ДТ ток заряда практически всегда имеет импульсный характер. Рассмотрим более подробно формирование постоянной составляющей зарядного тока. В полупериоде изменения напряжения источника 6, когда мгновенное значение напряжения на выходных клеммах 9 и 8 двухполупериодного мостового выпрямителя 7 станет больше напряжения заряжаемой батареи 3, происходит заряд АБ по цепи 9-10-1-3-2-8. Ограничение зарядного тока осуществляется с помощью токоограничивающего ДТ 10. При этом ток заряда увеличивается от нуля до своего максимального значения, что по времени соответствует моменту достижения мгновенным напряжением источника значения E m . По этой причине, за счет энергии, запасенной в магнитном поле дросселя (пропорциональной индуктивности дросселя и квадрату мгновенного значения тока в дросселе), при уменьшении мгновенного значения напряжения источника и скачкообразного изменения ЭЛС самоиндукции ДТ, последний, переходя из режима накопителя энергии в режим источника, обеспечивает продолжение заряда батарей, во время которого ток заряда проходит через ДТ 10, батарею 3 и источник 6, а также по цепи 10-1-3-2-8 и соединенные последовательно диоды выпрямителя, т.е. помимо источника 6. Формирование переменной составляющей асимметричного переменного тока происходит по цепи 12-11-1-3-2-8-12. При этом разрядная обмотка 12 ДТ расположена на одном магнитопроводе с его обмоткой 10 и работает в режиме источника переменного тока. ЭДС взаимоиндукции обмотки 12 изменяется с частотой, в два раза большей, чем ЭДС самоиндукции обмотки 10. Формирование разрядного импульса происходит следующим образом. В промежутке между униполярными зарядными импульсами зарядный ток равен нулю и соответственно ЭДС взаимоиндукции разрядной обмотки 12 ДТ равна нулю. Положительный потенциал клеммы 1 и отрицательный клеммы 2 (создаваемый батареей АБ 3) вызывают протекание тока в последовательном индуктивном емкостном контуре (ИЕК) 11-12, в результате чего формируется (синусоидальный по форме тока) импульс заряда ЗРК 11. Выше отмечено, что при однополупериодном выпрямлении тока частота ИЕК равна частоте тока источника, а при двухполупериодном выпрямлении вдвое превышает частоту тока (напряжения) источника 6. Пренебрегая потерями энергии в этом контуре, можно было бы считать, что в нем установится переменный ток, изменяющийся по гармоническому (синусоидальному) закону. Потери в этом контуре должны приводить к затуханию этих колебаний, однако трансформаторная связь обмоток 10 и 12 ДТ приводит к тому, что часть энергии, запасенной в ДТ при ограничении импульса зарядного тока в зарядной обмотке 10 трансформаторным путем передается в разрядную обмотку 12 и колебательный процесс в ИЕК поддерживается непрерывно. Такая подкачка осуществляется в конце каждого зарядного импульса тока. По этой причине при увеличении зарядного тока от нуля до своего максимального значения в разрядной обмотке ДТ возникает ЭДС взаимоиндукции такой полярности, при которой направление разрядного тока, протекающего через батарею по цепи 12-8-2-3-1-11-12, противоположно зарядному току, протекающему через нее. Причем, до некоторого момента времени, когда мгновенное значение зарядного тока мало, мгновенное значение разрядного тока больше его по абсолютной величине. Так формируется разрядный импульс тока, протекающий через батарею. Величина его зависит от соотношения емкости конденсатора 11 и индуктивности разрядной обмотки 12 ДТ. Таким образом, через батарею протекают постоянная и переменная составляющие тока. Постоянная составляющая тока источника запасется аккумуляторами, а переменная составляющая, циркулирующая в конденсаторе 11 и разрядной обмотке 12 дросселя-трансформатора и замыкаемая через батарею, активизируя электрохимические процессы в аккумуляторах, способствует уменьшению их внутреннего сопротивления. Экспериментальные исследования физической модели данной СЗ подтвердили ее хорошую работоспособность и реальность достижения цели изобретения по п. 2 и 1 формулы. Новизна этого предложения, не следующего явным образом из известного уровня техники, обеспечивает изобретательский уровень данных изобретений, которые могут быть использованы, как отмечено выше, в аккумуляторной промышленности при формовке АБ и во всех областях техники, использующих батареи в качестве химических источников тока. Следовательно, формирование постоянной составляющей АТ с помощью выпрямителя и ее ограничение дросселем-трансформатором, а переменной составляющей АТ с помощью ИЕК, подкачиваемого энергией за счет части энергии, полученной в таких ограничениях величины импульсов зарядного тока, упрощает зарядные устройства, реализующие способ, а также улучшает их удельные энергетические показатели. Литература. 1. А.Г. Николаев. Г.Н. Петров, Б.М. Сухарев и В.А. Хохлов. Системы электроснабжения, электрические сети и освещение. Уч. пособие. Л. ВИКИ им. А.Ф. Можайского, 1978. 332 с. ил. 2. Авт. свид. СССР N 411552, М. кл. H 02 J 7/02. 3. Авт. свид. СССР N 431588, М. кл. H 02 J 7/02. 4. Авт. свид. СССР N 463175, М. кл. H 02 J 7/10. 5. Электричество, 1976, N11, с. 43, рис. 5. 6. Авт. свид. СССР N 577609, М. кл. H 02 J 7/10, 1977.

Самое простое, но самое правильное зарядное устройство

Впервые столкнувшись с необходимостью реанимации уже мертвых аккумуляторов, я решил изучить вопрос и задаться целью "впихнуть невпихуемое", т.е. выжать из приготовленных на выброс АКБ последнее. Вопрос этот встал в середине 90х - в то время самыми распространенными и используемыми были кислотные, щелочные, никель-кадмиевые и никель-металлгидридные аккумуляторы.
Сразу скажу, что штатные ЗУ, предназначенные для зарядки разных АКБ уже не справлялись: одни уже в начале цикла говорили, что ничего нельзя сделать, а другие честно проходили цикл, но АКБ свою емкость так и не набирала даже на 10%.
Итак, есть два способа зарядки от источника постоянного тока: постоянным (во времени) током или постоянным (во времени) напряжением. Однако, в любом случае отмечается нагрев пациента и закипание (если электролит жидкий). Опуская всякие детали, перейду к тому, что же я вывел для себя.
А получается вот что: заряжать аккумуляторы нужно не только импульсами, а еще и разряжать в паузах между импульсами заряда. Но что еще важнее - импульсы постоянного тока также не очень благоприятны. В итоге родилось вот такое устройство:
Самое простое зарядное устройство "simplest charger"
Схема зарядного устройства
Это решение позволяет заряжать аккумулятор, а также разряжать в паузах длиной в полу-период.
R1 - регулируется ток заряда, который составляет 10% от емкости АКБ+Jразр.
R2 - рассчитывается так, чтоб через него в паузах разряда шел ток Jразр в 10 раз меньший, чем ток заряда. Я для этой цели использую и лампы накаливания, если токи заряда велики.
Например, если емкость АКБ 55Ач, то зарядный ток нужно поддерживать на всем протяжении заряда равным Jзар=5.5+0.55=6.1А.
Первый опыт был настолько многообещающим, что я не мог поверить.
1. Щелочной брикет 10-НКГЦ-10 был настолько мертв, что родное армейское полностью автоматическое ЗУ вообще отказывалось заряжать. Этим устройством я зарядил так, что до сих пор (с 1995 года) пользуюсь этой батареей (естественно, заряжая, при необходимости). Пусть и изредка.
2. Шахтерский фонарь выпуска 1992 года, проведший в разряженном состоянии на балконе друга несколько лет (с нашими-то зимами). На момент вручения его мне в 1997 году он вообще признаков жизни не подавал. А ведь я его до сих пор использую на рыбалке
3. Аккумулятор в первом автомобиле был при покупке забракован продавцом (UA9CDV) и был крайне рекомендован к смене первой же зимой, т.к. "намаялся он с ним"... А ведь я поездил на авто несколько лет и до сих пор на нем ездит уже третий владелец. Авто 1993 года.
4. Аккумулятор видеокамеры друга в 2000 году не держал уже даже 5 минут. После "правильной" процедуры он заставлял работать видеокамеру в течение 1 часа, хотя по паспорту она всего 45 минут могла непрерывно работать и длительней у него никогда не получалось.

Более перечислять не буду, ибо страница станет грустной.
При этом, нужно отметить, что аккумуляторы не "кипели" как при родных зарядниках и не грелись столь сильно.
Правила пользования:
1. Резистором R1 установить зарядный ток 1/10 от емкости АКБ
2. Резистором R2 установить разрядный ток 1/10 от зарядного тока
3. В течение зарядки вручную поддерживать ток заряда постоянным во времени. Это требование желательное, но сколько себя помню - ни разу его не соблюдал Поэтому ток заряда изначально ставил больше, т.к. он неизбежно снизится существенно (зависит от состояния АКБ).
4. При таких условиях, заряжать любой аккумулятор (из перечисленных в начале) нужно 14-16 часов.

В случае с Li-on и Li-Pol аккумуляторами вопрос решается гораздо сложнее: с применением зарядных процессоров и прочей обвязки, однако, у них нет памяти, поэтому есть вариант обойти различные хитрости. Но их заряжать ассиметричным током не рекомендую (лучше постоянным). Хотя и делал это неоднократно))

С учетом такого опыта, я сделал в источнике питания трансивера третью клемму, на которую подал через диод питание с трансформатора. Теперь, подключая аккумулятор к этой клемме и к минусовому выводу, я заряжаю все свои старые аккумуляторы на протяжении уже почти 10 лет. Тем более, что и ток выходит знатный!

Значительно лучших эксплуатационных характеристик аккумуляторов можно добиться, если их зарядку производить асимметричным током. Схема устройства зарядки, реализующая такой принцип, показана на рисунке.

При положительном полупериоде входного переменного напряжения ток протекает через элементы VD1, R1 и стабилизируется диодом VD2. Часть стабилизированного напряжения через переменный резистор R3 подается на базу транзистора VT2. Транзисторы VT2 и VT4 нижнего плеча устройства работают как генератор тока, величина которого зависит от сопротивления резистора R4 и напряжения на базе VT2. Зарядный ток в цепи аккумулятора протекает по элементам VD3, SA1.1, РА1, SA1.2, аккумулятор, коллекторный перепад транзистора VT4, R4.

При отрицательном полупериоде переменного напряжения на диоде VD1 работа устройства аналогична, но работает верхнее плечо - VD1 стабилизирует отрицательное напряжение, которое регулирует протекающий по аккумулятору ток в обратном напряжении (ток разрядки).

Показанный на схеме миллиамперметр РА1 используется при первоначальной настройке, в дальнейшем его можно отключить, переведя переключатель в другое положение.

Такое зарядное устройство обладает следующими преимуществами: 1. Зарядный и разрядный токи можно регулировать независимо друг от друга. Следовательно, в данном устройстве возможно применять аккумуляторы с различной величиной энергоемкости. 2. При каких-либо пропаданиях переменного напряжения каждое из плеч закрывается и через аккумулятор ток не протекает, что защищает аккумулятор от самопроизвольной разрядки.

В данном устройстве из отечественных элементов можно применить в качестве VD1 и VD2 - KC133A, VT1 и VT2 - КТ315Б или КТ503Б. Остальные элементы выбираются в зависимости от зарядного тока. Если он не превышает 100 мА, то в качестве транзисторов VT3 и VT4 следует применить КГ815 или КТ807 с любыми буквенными индексами (расположить на теплоотводе с площадью теплорассеиваюшей поверхности 5...15 кв.см), а в качестве диодов VD3 и VD4 - Д226, КД105 тоже с любыми буквенными индексами.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

КТ315Б

2 КТ503Б В блокнот
VT3, VT4 Биполярный транзистор

КТ807А

2 КГ815 В блокнот
VD1, VD2 Стабилитрон

КС133А

2 В блокнот
VD3, VD4 Диод

Д226

2 КД105 В блокнот
R1-R3 Резистор

1 кОм

3 В блокнот
R4 Резистор

3 Ом

1

Устройства зарядки, реализующая такой принцип, показана на рисунке.При положительном полупериоде входного переменного напряжения ток протекает через элементы VD1, R1 и стабилизируется диодом VD2. Часть стабилизированного напряжения через переменный резистор R3 подается на базу транзистора VT2. Транзисторы VT2 и VT4 нижнего плеча устройства работают как генератор тока, величина которого зависит от сопротивления резистора R4 и напряжения на базе VT2. Укв схема Зарядный ток в цепи аккумулятора протекает по элементам VD3, SA1.1, РА1, SA1.2, аккумулятор, коллекторный перепад транзистора VT4, R4.При отрицательном полупериоде переменного напряжения на диоде VD1 рабо-та устройства аналогична, но работает верхнее плечо - VD1 стабилизирует отрицательное напряжение, которое регулирует протекающий по аккумулятору ток в обратном напряжении (ток разрядки). Показанный на схеме миллиамперметр РА1 используется при первоначальной настройке, в дальнейшем его можно отключить, переведя переключатель в другое положение. Такое зарядное устройство обладает следующими преимуществами:1. Зарядный и разрядный токи можно регулировать независимо товарищ от друга. Следова-тельно, в данном устройстве может быть применять аккумуляторы с различной величиной энергоемко...

Для схемы "Зарядка и восстановление аккумулятора"

При неправильной эксплуатации автомобильного аккумулятора пластины могут сульфатироваться, и он выходит из строя. Восстанавливают такие батареи зарядом "асимметричным" током, когда соотношение зарядного и разрядного токов выбрано 10:1. В этом режиме не только восстанавливают засульфатированные батареи, но и проводят профилактику исправных. ...

Для схемы "ЗАРЯДНО-ДЕСУЛЬФАТИРУЮЩИЙ АВТОМАТ ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВ"

Автомобильная электроникаЗАРЯДНО-ДЕСУЛЬФАТИРУЮЩИЙ АВТОМАТ ДЛЯ АВТОМОБИЛЬНЫХ АККУМУЛЯТОРОВА.СОРОКИН, 343902, Украина, г.Краматорск-2, а/я 37.Давно уже известен тот факт, что электрохимических источников питания током, при соотношении Iзар: Iразр = 10:1, в частности кислотных аккумуляторов, приводит к устранению сульфатации пластин в батарее, т.е. к восстановлению их емкости, что, в свою очередь, продлевает срок службы батареи.Не вечно есть вероятность находиться около зарядного устройства и все час контролировать процесс зарядки, поэтому зачастую либо систематически недозаряжают батареи, либо перезаряжают их, что, конечно же, не продлевает срок их службы.Из химии понятно, что разность потенциалов между отрицательной и положительной пластинами в аккумуляторной батарее составляет 2,1 В, что при 6 банках дает 2,1 х 6 = 12,6 В.При зарядном токе, равном 0,1 от емкости батареи, в конце заряда напряжение повышается до 2,4 В на одну банку или 2,4 х 6 = 14,4 В. Т160 схема регулятора тока Повышение зарядного тока ведет к повышению напряжения на аккумуляторе и повышенному разогреву и кипению электролита. же ниже 0,1 от емкости не позволяет доводить напряжение до 14,4 В, однако продолжительный (до трех недель) малым способствует растворению кристаллов сульфата свинца. Особенно опасны дендриты сульфата свинца, "проросшие" в сепараторах. Они и вызывают быстрый саморазряд батареи (с вечера зарядил...

Для схемы "ИЗМЕРИТЕЛЬ ЕМКОСТИ"

Измерительная техникаИЗМЕРИТЕЛЬ ЕМКОСТИЭлектролитические конденсаторы из-за понижения емкости или значительного тока утечки нередко являются причиной неисправности радиоаппаратуры. Электронный тестер, схема которого приведена на рисунке, позволяет определить целесообразность дальнейшего использования конденсатора, явившегося предположительно причиной неисправности. Совместно с многопредельным авометром (на пределе 5 В) или отдельной измерительной головкой (100 мкА), тестером, можно измерять емкости от 10 мкф до 10 000 мкф, а также качественно определить степень утечки конденсаторов.В основе работы тестера лежит принцип контроля остаточного заряда на полюсах конденсатора, который был заряжен определенной величины в течение определенного времени. Например, емкость 1 Ф. получавшая 1 А в течение 1 с, будет иметь разность потенциалов на обкладках, равную 1 В. Схемы конвертера радиолюбителя Практически постоянный ток заряда испытуемого конденсатора С обеспечивается генератором тока, собранным на транзисторе V5. На первом диапазоне емкости можно измерять до 100 мкф (ток заряда конденсатора 10 мкА), на втором - до 1000 мкф (100 мкА) и на третьем - до 10 000 мкф (1мА). Время заряда Сx выбрано равным5 с и отсчитывается либо автоматически с помощью реле времени либо по секундомеру.Перед началом измерения в положении переключателя S2 "Разряд" потенциометром R8 устанавливают баланс моста, образованного базово-эмиттерными переходами транзисторов V6 и V7, резисторами R8, R9, R10 и диодами V3. V4 , используемыми в качестве низковольтного источника опорного напряжения. Затем переключателем S1 выбирают ожидаемый диапазон измерения емкости. Если конденсатор не маркирован или...

Для схемы "ЗАРЯДКА СТАБИЛЬНЫМ ТОКОМ"

ЭлектропитаниеЗАРЯДКА СТАБИЛЬНЫМ Существует несколько методов зарядки аккумуляторов: постоянным током с контролем напряжения на заряжаемом аккумуляторе; при постоянном напряжении, контролируя ток зарядки; по Вубриджу (правилу ампер-часов) и др. Каждый из перечисленных способов имеет как преимущества, так и недостатки. Справедливости ради следует отметить, что самым распространенным, да и надежным, остается все же зарядка постоянным током. Появление микросхемных стабилизаторов напряжения, позволяющих работать в режиме стабилизации тока, делает применение этого способа ещё более привлекательным. Кроме того, только зарядка постоянным обеспечивает наилучшее восстановление емкости аккумулятора, когда процесс разбивают, как правило, на две ступени: заряжают номинальным и вдвое меньшим.Например, номинальное напряжение батареи из четырех аккумуляторов Д-0,25 емкостью 250 мА-ч - 4,8...5 В. Каталок схема печатни плата золотаискателязе Номинальный зарядный ток обычно выбирают равным 0,1 от емкости - 25 мА. Заряжают таким током до тех пор, пока напряжение на аккумуляторной батарее не достигнет 5,7...5,8 В при подключенных клеммах зарядного устройства, а далее в течение двух-трех часов продолжают заряжать током приблизительно 12 мА. Зарядное устройство (см. схему) питают выпрямленным напряжением 12В. Сопротивление токоограничительных резисторов рассчитывают по формуле: R = Uст / I, где Uст - напряжение стабилизации микросхемного стабилизатора; I -зарядный ток. В рассматриваемом случае Ucт = 1,25 В; соответственно сопротивление резисторов - R1 = 1,25 / 0,025 = = 50 Ом, R2= 1,25/0,0125 =100 Ом. В устройстве можно применить микросхемы SD1083, SD1084, ND1083 или ND1084. Стабилизатор...

Для схемы "Немного об ускоренной зарядке"

В последнее час в продаже появилось большое количество различных зарядных устройств (ЗУ). Многие из них обеспечивают зарядный ток. численно равный 1/10 от емкости аккумулятора. Зарядка при этом длится12. ..18 часов, что многих прямо не устраивает. Для удовлетворения требований рынка разработаны "ускоренные" зарядные устройства.Например, ЗУ "FOCUSRAY". модель 85 (рис.1), представляет собой автоматическое зарядное устройство для ускоренной зарядки, смонтированное в корпусе с сетевой вилкой и позволяющее заряжать одновременно два аккумулятора типа 6F22 ("Ника") или четыре NiCd или NiMH аккумулятора типоразмеров AAA или АА (316) до 1000 мА. На корпусе ЗУ, напротив каждого аккумуляторного гнезда, в кассете имеется свой светодиод. индицирующий режим работы ЗУ. При отсутствии аккумулятора он не светится, при зарядке - мигает, по окончании зарядки светит постоянно.Естественно, наиболее полноценная работа батареи аккумуляторов происходит тогда, когда аккумуляторы одинаковые. Укв схема При этом и разряд происходят одновременно, и полностью используется их ресурс как источника питания. На практике такая идеальная ситуация почти не встречается, и приходится либо подбирать аккумуляторы для батареи, пользуясь приборами, либо "приучать" аккумуляторы к совместной работе. Для этого необходимо:- взять однотипные аккумуляторы с одинаковой емкостью и, желательно, из одной партии; - зарядить их и полностью разрядить на реальную нагрузку; - повторить заряд-разряд в составе батареи несколько раз, т.е. произвести ее "формовку".Подогнать аккумуляторы приятель к другу можно и при индивидуальной зарядке. Установив аккумуляторы в держатели батарейного отсека ЗУ. включаем его в сеть. Индикаторные светодиоды начинают мигать, сигнализируя об успешной зарядке. В противном случае нужно пров...

Для схемы "ПОВЫШЕНИЕ ЭКОНОМИЧНОСТИ ЛАМП-ВСПЫШЕК"

Бытовая электроникаПОВЫШЕНИЕ ЭКОНОМИЧНОСТИ ЛАМП-ВСПЫШЕКОбычно для повышения экономичности ламп-вспышек используют срыв генерации преобразователя напряжения источника питания в момент достижения выходным напряжением заданной величины. Основным недостатком этого способа является то, что транзисторы преобразователя после срыва генерируемых колебаний остаются подключенными к источнику питания. Транзисторы в это пора закрыты, однако наличие начального коллекторного тока, который у мощных транзисторов, применяемых в преобразователе, достигает нескольких десятков миллиампер, приводит к неоправданному расходу энергии источника питания. Так, например, начальный коллекторный ток транзисторов П4Б может быть равным 20- 40 мА. В двухтактном преобразователе общий потребляемый ток при этом составит 40-80 мА, то есть при интервале между вспышками 30 мин бесполезно тратится 0,02-0,04 А-ч, то есть почти 10% емкости одной батареи 3336Л.Указанный недостаток можно устранить, собрав преобразователь по схеме, приведенной на рис.1. Особенностью его является то, что при заданном уровне выходного напряжения посредством реле Р1 происходит отключение преобразователя от источника питания.Puc.1При установке переключателя В1 в положение "Вкл" на каскад, собранный на составном транзисторе ТЗ, Т4, подается напряжение питания и оба транзистора открываются. Схемы на тс106-10 Через обмотку реле Р1 потечет ток, оно сработает и через контакты Р1/1 подаст напряжение питания на преобразователь, собранный на транзисторах Т1 и Т2. Накопительный конденсатор С1 начнет заряжаться. Когда напряжение на нем возрастет примерно до 300 В, зажжется неоновая лампа Л1 и с делителя R3R4 положительное напряжение через лампу поступит на базу транзистора ТЗ. Транзисторы ТЗ и Т4 закроются. Обмотка реле обесточится и контакты Р111 отключат преобразователь от источника питания. Как только напряжение на конденсаторе С1 за счет саморазряда упадет до такого уровня, ч...

Для схемы "Автоматическое разрядно-зарядное устройство (АРЗУ) Ni-Cd батареи"

Большое количество аппаратуры с автономными источниками питания, находящейся в эксплуатации у потребителя, требует от последнего затрат на батарейные источники питания. Гораздо выгоднее эксплуатировать Ni-Cd аккумуляторы, которые при правильном их использовании способны перенести до 1000 циклов разряд-заряд. Однако к аккумуляторному блоку питания (АБП) надобно дополнительно иметь и зарядное устройство, и тестер для быстрого определения годности элементов питания. За последнее десятилетие в популярной радиотехнической литературе появилось немалое количество описаний автоматических зарядных устройств. Используя минимальные материальные и временные ресурсы, радиолюбитель разрабатывает и изготовляет полуавтоматические зарядные устройства. Они не соответствуют полному технологическому циклу по обслуживанию АБП или его отдельных элементов (далее изделие), утвержденному ГОСТом , не обеспечивают их полный заряд, а также надежную и долговременную эксплуатацию, особенно в тех случаях, когда заканчивается по величине напряжения на выводах изделия. Реле поворотов на тиристоре схемы А как понятно, систематический недозаряд приводит к уменьшению активности электродов и уменьшению емкости изделия. Указанный ГОСТ требует сначала разрядить изделие нормативным разрядным до величины, при которой на элементе АБП будет напряжение 1 В, а потом заряжать током, равным десятой части его емкости в течение определенного времени. Указанные режимы позволяют заряжать АБП без опасности накопления избыточного заряда, без опасности недозаряда, без опасности перегрева или взрыва. Наиболее близко по выполняемым функциям предлагаемому устройство, описанное в , но в отличие от него оно выполнено на доступной элементарной базе, не требует настройки времязадающей цепи с помощью частотомера....

Для схемы "Генератор пилообразного напряжения"

Радиолюбителю-конструкторуГенератор пилообразного напряжения Генератор, принципиальная схема которого приведена на рисунке, позволяет получать пилообразное напряжение довольно высокой линейности. Он выполнен на двух операционных усилителях и одном полевом транзисторе с изолированным затвором. На первом операционном усилителе МС1 собран генератор прямоугольных импульсов, частота следования которых синхронизирована входными импульсами. Длительность импульса и паузы определяется временем заряда н разряда конденсатора С1. Заряд конденсатора происходит через резисторы R1 и R2, а разряд только через резистор R1 (резистор R2 зашунтирован диодом Д1). Диод Д2 и стабилитрон ДЗ ограничивают положительное напряжение, подаваемое на вход полевого транзистора Т1.На втором операционном усилителе МС2 выполнен интегратор, работой которого управляют импульсы, поступающие с генератора прямоугольных импульсов через электронный ключ (транзистор Т1)."Радио, телевизия, електроника" (НРБ), 1975. N 2Примечание. В генераторе пилообразного напряжение можно использовать операционные усилители К153УД1А и полевой транзистор КП301....

Для схемы "Детектор переменного тока"

Устройство предназначено для контроля проводника с протекающим по нему переменным током. Чувствительность прибора такова, что позволяет бесконтактным способом контролировать проводники с 250 мА и более.На рис. 1 приведена принципиальная электрическая схема прибора.Датчиком переменного электрического тока с частотой бытовой сети (50 Гц) является катушка индуктивности L1. L1 выполнена в виде U-образного сердечника диаметром 2,5см, на который намотано 800 витков провода из магнитного материала диаметром 0.15...0,25 мм (рис. 2).Сердечник катушки может быть взят от центральной части межкаскадных или согласующих трансформаторов НЧ, или малогабаритных электромагнитных звонков. Главное требование к сердечнику - при намотанной обмотке L1 через центр катушки должен свободно продеваться контролируемый проводник (ее диаметр может составлять несколько единиц, а то и десятков миллиметров). Т160 схема регулятора тока Следует отметить, что через датчик должен быть пропущен только один из исследуемых проводов (фазный или нулевой), так как в случае наличия двух проводников внутри датчика может предстать компенсация магнитного поля и прибор не отреагирует должным образом на протекающий в проводнике ток. При экспериментировании с прибором брался сдвоенный сетевой кабель, в котором делался продольный разрез изоляции, образуя при этом два раздельных проводника, один из которых и помещался в U-образный захват.В обмотке магнитного захвата (U-образный датчик) наводится, приблизительно, напряжение приблизительно 4 мВ при исследовании сетевого провода с 250 мА (соответствует мощности, потребляемой нагрузкой 55 Вт при напряжении сети 220 В). Сигнал с магнитного датчика усилив...

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама