THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Внешние характеристики выпрямителей имеют вид падающей кривой (см. рис. 12.6), поэтому увеличение тока нагрузки вызывает снижение выходного напряжения. В то же время для питания многих устройств систем управления (электродвигателей, усилителей и т. д.) требуется поддержание выходного напряжения на заданном уровне независимо от значения тока нагрузки. Для этого используют управляемые (регулируемые) выпрямители с применением тиристоров, транзисторов и других управляющих приборов. Внешняя, характеристика таких выпрямителей показана на рис. 12.6 штрихпунктиром и близка к идеальной.

Сущность работы тиристорного управляемого выпрямителя рассмотрена на примере простейшей однополупериодной схемы (рис. 12.7, а). Схема управления тиристора VS обеспечивает изменение момента его включения, что способствует поддержанию на заданном уровне среднего значения напряжения на нагрузке, при различных значениях тока нагрузки. В случае активной нагрузки R н тиристор VS автоматически выключается в тот момент времени, когда его анодное напряжение приближается к нулю. Таким образом, при включающем тиристор сигнале, оцениваемом углом включения, прибор работает в режиме переключателя с временем включения

где Т - период колебания входного напряжения u(t).

Например, при α =0 время

и тиристор VS полностью открыт в течение положительных полуволн питающего напряжения.

что соответствует уменьшению времени t u 1 включения тиристора на 1/4, т.е. на 25%, и т.д.

Для пояснения механизма управления тиристорной схемой на рис. 12.7, б, в, г приведены временные диаграммы напряжений на нагрузке. При наименьшем угле включения тиристора α =0 (рис. 12.7, б) среднее напряжение на нагрузке имеет максимальное для однополупериодной схемы (рис. 12.7, а) значение, равное

Если в режиме минимальной нагрузки (R н велико, I н.ср мало) обеспечить, например, угол α =π/2 (рис. 12.7, г), а затем по мере повышения нагрузки уменьшать угол α (рис. 12.7, в), то можно получить неизменное значение U н.ср за счет компенсации возрастания значения ∆U ср [см. (12.11)]. Такой принцип управления тиристорным выпрямителем называют фазоимпульсным (вертикальным) и широко используют в тиристорных преобразователях различного назначения.

Рис. 12.7. Однополупериодный выпрямитель с тиристором: а - схема (УЭ - управляющий электрод); б, в, г - временные диаграммы выпрямленного напряжения при различных углах включения тиристора

Схемы управления тиристором должны генерировать управляющие импульсы в заданные моменты времени, соответствующие требуемым значениям угла. При этом для надежной работы тиристора необходимы кратковременные импульсы с большой крутизной переднего фронта. Устройство, обеспечивающее регулирование угла включения тиристора, называют фазовращателем. Фазовращатели легко получить, используя комбинацию трансформатора с R- и L-элементами. Однако из-за низкой крутизны формируемого ими управляющего сигнала они не находят применения в тиристорных схемах. Наиболее пригодны для указанных целей полупроводниковые фазовращатели со встроенными пик-генераторами на динисторах (диодных тиристорах).

Простейшая схема пик-генераторного управления тиристором VS1 приведена на рис. 12.8, а. Она состоит из динисторного автогенератора релаксационных колебаний (параллельно включенные конденсатор Су и динистор VS2), служащего одновременно и формирователем кратковременных импульсов управления тиристором VS1 благодаря использованию резистора R у в анодной цепи динистора VS2.

В момент положительных полуволн питающего напряжения u(t) начинается заряд конденсатора С у через регулировочный резистор R р. Этот процесс продолжается до тех пор, пока напряжение u C (t) на конденсаторе не достигнет значения U вкл, достаточного для переключения динистора VS2, т. е.

С этого момента t=t 1 (рис. 12.8, б) динистор переходит в режим насыщения (проводящее состояние), характеризующийся чрезвычайно низким значением его выходного сопротивления. В результате этого конденсатор С у разряжается через динистор VS2 и резистор R у, формируя кратковременный импульс тока i у (рис. 12.8, в) в управляющей цепи тиристора VS1. Окончание времени разряда обусловливается снижением напряжения на динисторе до значения U выкл, т. е. моментом времени t=t 2 (рис. 12.8, б). В этот момент происходит обратное переключение динистора в состояние отсечки. Конденсатор С у, вновь получает возможность заряжаться под действием следующей полуволны питающего схему напряжения u(t). При изменении сопротивления резистора R р (рис. 12.8, а) меняются параметры зарядной цепи (τ з =R р С у), а потому наблюдается сдвиг импульсов управления i у во времени (рис. 12.8, в). Это позволяет менять угол включения тиристора, обеспечивая таким образом фазоимпульсный способ управления выходным напряжением (см. рис. 12.7).

Рис. 12.8. Схема пик-генераторного управления тиристором (а); временные диаграммы напряжения на конденсаторе (б) и тока управления тиристором (в)

Рассмотренный принцип управления тиристором можно использовать как для однофазных, так и многофазных выпрямительных устройств.

В выпрямителях с трансформаторами на входе регулирование напряжения на нагрузке можно осуществлять тиристорами, включенными во входную цепь переменного тока, как показано на рис. 12.9. Такие схемы весьма перспективны для выпрямителей, использующих понижающие трансформаторы, поскольку при U 1 >>U 2 имеем I 1 <

Рис. 12.9. Схема двухполупериодного тиристорного управления выпрямителем

Для регулировки выходного напряжения в цепях переменного тока с выпрямлением применяют управляемые выпрямители. Наряду с другими способами управления выходным напряжением после выпрямителя, такими как ЛАТР или реостат, управляемый выпрямитель позволяет добиться большего КПД при высокой надежности схемы, чего нельзя сказать ни о регулировании при помощи ЛАТРа, ни о реостатном регулировании.

Использование управляемых вентилей более прогрессивно и гораздо менее громоздко. Лучше всего на роль управляемых вентилей подходят тиристоры.

В исходном состоянии тиристор заперт, а возможных устойчивых состояний у него два: закрытое и открытое (проводящее). Если напряжение источника выше нижней рабочей точки тиристора, то при подаче на управляющий электрод импульса тока, тиристор перейдет в проводящее состояние, а следующие импульсы, подаваемые на управляющий электрод никак не отразятся на анодном токе, то есть цепь управления отвечает только за открывание тиристора, но не за его запирание. Можно утверждать, что тиристоры обладают значительным коэффициентом усиления по мощности.

Для выключения тиристора необходимо снизить его анодный ток, чтобы он стал меньше тока удержания, что достигается путем понижения напряжения питания или увеличением сопротивления нагрузки.

Тиристоры в открытом состоянии способны проводить токи до нескольких сотен ампер, но при этом тиристоры довольно инерционны. Время включения тиристора составляет от 100 нс до 10 мкс, а время выключения в десять раз больше - от 1 мкс до 100 мкс.

Чтобы тиристор работал надежно, скорость нарастания анодного напряжения не должна превышать 10 - 500 в/мкс, в зависимости от модели компонента, иначе может произойти ложное включение за счет действия емкостного тока через p-n переходы.

Чтобы избежать ложных включений, управляющий электрод тиристора всегда шунтируют резистором, сопротивление которого обычно лежит в диапазоне от 51 до 1500 Ом.

Помимо тиристоров для регулирования выходного напряжения в выпрямителях используют и другие : симисторы, динисторы и запираемые тиристоры. Динисторы включаются по напряжению, приложенному к аноду, и имеют они два электрода, как диоды.

Симисторы отличаются возможностью включения управляющими импульсами хоть относительно анода, хоть - относительно катода, однако все эти приборы, как и тиристоры, выключаются снижением анодного тока до значения ниже тока удержания. Что касается запираемых тиристоров, то они могут запираться подачей на управляющий электрод тока обратной полярности, однако коэффициент усиления при выключении в десять раз ниже, чем при включении.

Тиристоры, симисторы, динисторы, управляемые тиристоры, - все эти приборы используются в источниках питания и в схемах автоматики для регулирования и стабилизации напряжения и мощности, а также для целей защиты.


Как правило, в схемы управляемого выпрямления вместо диодов ставят именно тиристоры. В однофазных мостах точка включения диода и точка включения тиристора отличаются, имеет место разность фаз между ними, которую можно отразить рассмотрев угол.

Постоянная составляющая напряжения на нагрузке нелинейно связана с этим углом, поскольку напряжение питания изначально синусоидальное. Постоянная составляющая напряжения на нагрузке, подключенной после регулируемого выпрямителя может быть найдена по формуле:

Регулировочная характеристика тиристорного управляемого выпрямителя показывает зависимость выходного напряжения на нагрузке от фазы (от угла) включения моста:


На нагрузке индуктивного характера ток через тиристоры будет иметь прямоугольную форму, и при угле больше нуля будет происходить затягивание тока в связи с действием ЭДС самоиндукции от индуктивности нагрузки.


При этом основная гармоника сетевого тока будет сдвинута относительно напряжения на некоторый угол. Чтобы исключить затягивание применяют нулевой диод, через который ток может замыкаться и давать сдвиг меньше в два раза по отношению к углу включения моста.

С целью управления напряжением в сети используются электронные выпрямители. Данные устройства работают путем изменения частоты. Многие модификации разрешается применять в сети переменного тока.

К основным параметрам выпрямителей относится проводимость. Также стоит учитывать показатель допустимого перенапряжения. Для того чтобы более детально разобраться в вопросе, надо рассмотреть схему выпрямителя.

Устройство модификаций

Схема выпрямителя предполагает использование контактного тиристора. Стабилизатор, как правило, применяется переходного типа. В некоторых случаях он устанавливается с системой защиты. Еще имеется множество модификаций на триодах. Работают данные устройства при частоте от 30 Гц. Для коллекторов они неплохо подходят. Также схема выпрямителя включает в себя компараторы низкой проводимости. Чувствительность у них соответствует показателю не менее 10 мВ. Определенный класс устройств оснащается варикапом. За счет этого модификации можно подключать к однофазной цепи.

Как это работает?

Как говорилось ранее, выпрямитель работает за счет изменения частоты. Первоначально напряжение попадает на тиристоры силовые. Процесс преобразования тока осуществляется при помощи триода. Чтобы избежать перегрева устройства, имеется стабилизатор. При появлении волновых помех в работу включается компаратор.

Область применения устройств

Наиболее часто устройства устанавливаются в трансформаторы. Также есть модификации для приводных модулей. Еще не стоит забывать про автоматизированные устройства, которые используются на производстве. В модуляторах выпрямители играют роль Однако в данном случае многое зависит от типа устройства.

Существующие типы модификаций

По конструкции выделяют полупроводниковые, тиристорные и мостовые модификации. В отдельную категорию относят силовые устройства, которые могут работать при повышенной частотности. Двухполупериодные модели для этих целей не подходят. Дополнительно выпрямители отличают по фазе. На сегодняшний день можно встретить одно-, двух- и трехфазные устройства.

Полупроводниковые модели

Полупроводниковые выпрямители замечательно подходят для Многие модификации выпускаются на базе коннекторных конденсаторов. Проводимость на входе у них не превышает 10 мк. Также стоит отметить, что полупроводниковые выпрямители отличаются по чувствительности. Устройства до 5 мВ способны использоваться при напряжении 12 В.

Системы защиты у них применяются класса Р30. Для подключения модификаций используются переходники. При напряжении 12 В параметр перезарузки в среднем равен 10 А. Модификации с обкладками выделяются высоким параметром рабочей температуры. Многие устройства способны работать от транзисторов. Для понижения искажений используются фильтры.

Особенности тиристорных устройств

Тиристорный выпрямитель предназначен для регулировки напряжения в сети постоянного тока. Если говорить про модификации низкой проводимости, то у них используется только один триод. при загрузке в 2 А составляет не менее 10 В. Система защиты у представленных выпрямителей используется, как правило, класса Р44. Также стоит отметить, что модели хорошо подходят для силовых проводников. Как работает трансформатор на тиристорных выпрямителях? В первую очередь напряжение попадает на реле.

Преобразование постоянного тока происходит благодаря транзистору. Для контроля выходного напряжения используются конденсаторные блоки. У многих моделей имеется несколько фильтров. Если говорить про недостатки выпрямителей, то стоит отметить, что у них высокие тепловые потери. При выходном напряжении свыше 30 В, показатель перегрузки значительно снижается. Дополнительно стоит учитывать высокую цену на тиристорный выпрямитель.

Мостовые модификации

Мостовые выпрямители работают при частоте не более 30 Гц. Угол управления зависит от триодов. Компараторы в основном крепятся через диодные проводники. Для силового оборудования модели подходят не лучшим образом. Для модулей применяются стабилизаторы с низкоомным переходником. Если говорить про минусы, то следует учитывать низкую проводимость при высоком напряжении. Системы защиты, как правило, применяются класса Р33.

Многие модификации подключаются через дипольный триод. Как работает трансформатор на этих выпрямителях? Первоначально напряжение подается на первичную обмотку. При напряжении свыше 10 В в работу включается преобразователь. Изменение частоты осуществляется при помощи обычного компаратора. С целью уменьшения тепловых потерь на мостовой управляемый выпрямитель устанавливается варикап.

Силовые устройства

Силовые выпрямители в последнее время считаются очень распространенными. Показатель перегрузки при невысоком напряжении у них не превышает 15 А. Система защиты в основном используется серии Р37. Модели применяются для понижающих трансформаторов. Если говорить про конструктивные особенности, то важно отметить, что устройства выпускаются с пентодами. Они выделяются хорошей чувствительностью, но у них низкий параметр рабочей температуры.

Конденсаторные блоки разрешается применять на 4 мк. Выходное напряжение свыше 10 В задействует преобразователь. Фильтры, как правило, используются на два изолятора. Также стоит отметить, что на рынке имеется множество выпрямителей с контроллерами. Основное их отличие кроется в возможности работы при частоте свыше 33 Гц. При этом перегрузка в среднем соответствует 10 А.

Двухполупериодные модификации

Двухполупериодный однофазный выпрямитель способен работать на разных частотах. Основное преимущество модификаций кроется в высоком параметре рабочей температуры. Если говорить про конструктивные особенности, то важно отметить, что тиристоры силовые используются интегрального типа, и проводимость у них не превышает 4 мк. При напряжении 10 В система в среднем выдает 5 А.

Системы защиты довольно часто применяются серии Р48. Подключение модификаций осуществляется через адаптеры. Также стоит отметить недостатки выпрямителей этого класса. В первую очередь это низкая восприимчивость к магнитным колебаниям. Параметр перегрузки порой может быстро изменяться. При частоте ниже 40 Гц чувствуются перепады тока. Еще эксперты отмечают, что модели не способны работать на одном фильтре. Дополнительно для устройств не подходят

Однофазные устройства

Однофазный управляемый выпрямитель способен выполнять множество функций. Устанавливают модели чаще всего на силовые трансформаторы. При частоте 20 Гц параметр перегрузки в среднем не превышает 50 А. Система защиты у выпрямителей используется класса Р48. Многие эксперты говорят о том, что модели не боятся волновых помех и отлично справляются с импульсными скачками. Есть ли недостатки у моделей данного типа? В первую очередь они касаются низкого тока при высокой загруженности. Чтобы решить эту проблему, устанавливаются компараторы. Однако стоит учитывать, что они не могу работать в цепи переменного тока.

Дополнительно периодически возникают проблемы с проводимостью тока. В среднем данный параметр равен 5 мк. Понижение чувствительности сильно влияет на работоспособность триода. Если рассматривать однофазные неуправляемые выпрямители, то обкладки у них используется с переходником. У многих моделей имеется несколько изоляторов. Также стоит отметить, что выпрямители данного типа не подходят для понижающих трансформаторов. Стабилизаторы чаще всего применяются на три выхода, и предельное напряжение у них не должно превышает 50 В.

Параметры двухфазных устройств

Двухфазные выпрямители производятся для цепей постоянного и переменного тока. Многие модификации эксплуатируются на триодах контактного типа. Если говорить про параметры модификаций, то стоит отметить малое напряжение при больших перегрузках. Таким образом, устройства плохо подходят для силовых трансформаторов. Однако преимуществом устройств считается хорошая проводимость.

Чувствительность у моделей стартует от 55 мВ. При этом тепловые потери незначительные. Компараторы применяются на две обкладки. Довольно часто модификации подключают через один переходник. При этом изоляторы предварительно проверяются на выходное сопротивление.

Трехфазные модификации

Трехфазные выпрямители активно применяются на силовых трансформаторах. У них очень высокий параметр перегрузки, и они способны работать в условиях повышенной частотности. Если говорить про конструктивные особенности, то важно отметить, что модели собираются с конденсаторными блоками. За счет этого модификации разрешается подключать к цепи постоянного тока и не бояться про волновые помехи. Импульсные скачки блокируются за счет фильтров. Подключение через переходник осуществляется при помощи преобразователя. У многих моделей имеется три изолятора. Выходное напряжение при 3 А не должно превышать 5 В.

Дополнительно стоит отметить, что выпрямители этого типа используются при больших перегрузках сети. Многие модификации оснащаются блокираторами. Понижение частоты происходит при помощи компараторов, которые устанавливаются над конденсаторной коробкой. Если рассматривать релейные трансформаторы, то для подключения модификаций потребуется дополнительный переходник.

Модели с контактным компаратором

Управляемые выпрямители с контактным компаратором в последнее время пользуются большим спросом. Среди особенностей модификаций стоит отметить высокую степень перегрузки. Системы защиты в основном применяются класса Р55. Работают устройства с одной конденсаторной коробкой. При напряжении 12 В выходной ток равен не менее 3 А. Многие модели способны похвастаться высокой проводимостью при частоте 5 Гц.

Стабилизаторы довольно часто применяются низкоомного типа. Они хорошо себя показывают в цепи переменного тока. На производстве выпрямители применяются для работы Допустимый уровень проводимости у них равен не более 50 мк. Рабочая температура в данном случае зависит от типа динистора. Как правило, они устанавливаются с несколькими обкладками.

Устройства с двумя компараторами

Электронные выпрямители с двумя компараторами ценятся за высокий параметр выходного напряжения. При перегрузке в 5 А модификации способны работать без тепловых потерь. Коэффициент сглаживания у выпрямителей не превышает 60 %. Многие модификации обладают качественной системой защиты серии Р58. В первую очередь она призвана справляться с волновыми помехами. При частоте 40 Гц устройства в среднем выдают 50 мк. Тетроды для модификаций используются переменного типа, и чувствительность у них равна не более 10 мВ.

Есть ли недостатки у выпрямителей данного типа? В первую очередь надо отметить, что их запрещается подключать к понижающим трансформаторам. В сети постоянного тока у моделей малый параметр проводимости. Рабочая частотность в среднем соответствует 55 Гц. Под однополюсные стабилизаторы модификации не подходят. Чтобы использовать устройства на силовых трансформаторах, применяется два переходника.

Отличие модификаций с электродным триодом

Управляемые выпрямители с электродными триодами ценятся за высокий параметр выходного напряжения. При низких частотах они работают без тепловых потерь. Однако стоит учитывать, что параметр перегрузки в среднем равен 4 А. Все это говорит о том, что выпрямители не способны работать в сети постоянного тока. Фильтры разрешается применять лишь на две обкладки. Выходное напряжение, как правило, соответствует 50 В, а система защиты используется класса Р58. Для того чтобы подключить устройство, применяется переходник. Коэффициент сглаживания у выпрямителей данного типа составляет не менее 60 %.

Модели с емкостным триодом

Управляемые выпрямители с емкостным триодом способны работать в сети постоянного тока. Если рассматривать параметры модификаций, то можно отметить высокое входное напряжение. При этом перегрузка при работе не будет превышать 5 А. Система защиты используется класса А45. Некоторые модификации подходят для силовых трансформаторов.

В данном случае многое зависит от конденсаторного блока, который установлен в выпрямителе. Как утверждают эксперты, номинальное напряжение многих модификаций составляет 55 В. Выходной ток в системе составляет 4 А. Фильтры для модификаций подходят переменного тока. Коэффициент сглаживания у выпрямителей составляет 70 %.

Устройства на базе канального триода

Управляемые выпрямители с канальными триодами отличаются высокой степенью проводимости. Модели данного типа замечательно подходят для понижающих трансформаторов. Если говорить про конструкцию, то стоит отметить, что модели всегда производятся с двумя коннекторами, а фильтры у них используются на изоляторах. Если верить экспертам, то проводимость при частоте 40 Гц сильно не меняется.

Есть ли недостатки у данных выпрямителей? Тепловые потери являются слабой стороной модификаций. Многие эксперты отмечают низкую проводимость коннекторов, которые устанавливаются на выпрямители. Чтобы решить проблему, применяются кенотроны. Однако их не разрешается использовать в сети постоянного тока.

Отличие модификаций

Выпрямители на 12 В используются только для понижающих трансформаторов. Компараторы в устройствах устанавливаются с фильтрами. Предельная перегрузка модификаций составляет не более 5 А. Системы защиты довольно часто применяются класса Р48. Для преодоления волновых помех они замечательно подходят. Еще часто применяются преобразовательные стабилизаторы, у которых высокий коэффициент сглаживания. Если говорить про недостатки модификаций, то стоит отметить, что выходной ток в устройствах составляет не более 15 А.


Управлять амплитудой напряжения можно различными способами. Можно установить автотрансформатор, на выходе которого напряжение изменяется в зависимости от положения бегунка автотрансформатора. Другим вариантом управления напряжением является подмагничивание сердечника трансформатора или применение дросселей насыщения, которые при подмагничивании изменяют переменную составляющую магнитного поля и соответственно напряжения. Оба приведенных метода требуют наличия громоздких и тяжелых установок.

Решение данной проблемы возможно при использовании тиристоров, которые позволяют управлять как выпрямленным действующим напряжением, так и действующим значением переменного напряжения.

На рис . 7.8, а и б представлены тиристорный управляемый выпрямитель и тиристорный регулятор мощности. Эти схемы отличаются друг от друга тем, что нагрузка в случает тиристорного управляемого выпрямителя включена после выпрямителя, а в случае тиристорного регулятора мощности - до выпрямителя. В первом случае происходит управление действующим значением выпрямленного напряжения, а во втором - действующим значением переменного напряжения.



По нагрузке, включенной после выпрямителя , протекает постоянный по направлению ток. По нагрузке, включенной перед выпрямителем , протекает переменный по направлению ток. При отсутствии запускающего импульса формирователя тиристор не открывается, поэтому ток по нагрузке не идет и падение напряжения на ней отсутствует. При отсутствии запускающих импульсов формирователя тиристор закрыт. Напряжение на тиристоре растет до того момента, пока не произойдет отпирание тиристора. При этом напряжение с открывшегося тиристора перераспределяется на нагрузку. На ри с. 7.9. (под пунктирной линией) - падение напряжения на закрытом тиристоре, а заштрихованная площадь - соответствует действующему значению напряжения на нагрузке.

Угол управления тиристора отсчитывается от момента прохождения напряжения через нулевую точку. Чем больше угол управления тиристора, тем дольше он остается закрытым, тем позже тиристор открывается, тем меньше действующее значение напряжения на нагрузке. Для однофазной цепи предельный угол управления тиристора составляет 180.электрическ. градусов. При этом угле мгновенное значение напряжения тиристора равно нулю и следовательно с подачей управляющего импульса в этот момент действующее значение напряжения на нагрузке равно нулю.

Тиристорные регуляторы мощности могут быть выполнены по разнообразным схемам. Одна из таких схем представлена на рис . 7.10. Открывание тиристоров VS 1 и VS 2 происходит поочередно. В первый полупериод открывается тиристор VS 1 , а во второй - VS 2 . Запускающие импульсы управления поступают с формирователя импульсов на тиристор по заданному углу управления. Пусть требуется получить напряжение на выходе тиристорного управляемого выпрямителя, равное половине входного, что соответствует углу управления 90 о, при максимальном угле управления 180 о. Частота сети 50 Гц , что соответствует периоду колебаний

или 20 мС .

Одна полуволна имеет длительность 10 мС , что соответствует углу управления 180 о. Для получения угла управления в 90 о необходимо запустить тиристор через 5мС после момента достижения напряжением нулевой отметки.

Схема простейшего тиристорного управляемого выпрямителя представлена на рис . 7.11.

Особенностью тиристорных регуляторов является необходимость синхронизации работы формирователя импульсов и напряжения сети. При отсутствии таковой незначительный уход частоты приведет к существенному изменению угла управления, а следовательно, и требуемое напряжение не будет соответствовать реальному напряжению.

Тиристорный управляемый выпрямитель состоит из силового блока и синхронизируемого формирователя импульсов. В состав силового блока входит выпрямитель на диодах VD 1 -VD 4 , тиристор VS и нагрузка. При больших мощностях нагрузки тиристор и диоды должны выдерживать тот ток, который требуется потребителю. Расчет этих элементов приведен в разделе «Полупроводниковые диоды».

Формирователь импульсов состоит из параметрического стабилизатора напряжения, который одновременно выполняет функции синхронизатора и блока формирования импульсов по заданному углу управления.

Параметрический стабилизатор состоит из балластного сопротивления R б и стабилитрона VD 5 . Резисторы R 1 и R 2 - делитель напряжения, задающий режим работы аналога тиристора с управлением по аноду на транзисторах VT 1 и VT 2 . Фазовращатель или времязадающая цепь построена на резисторе R 4 и конденсаторе С .

Переменный ток не пойдет через диоды выпрямителя до тех пор, пока тиристор VS не получит запускающий импульс от формирователя. Для получения запускающего импульса необходимо чтобы открылся аналог тиристора. С приходом выпрямленного напряжения на параметрический стабилизатор избытки напряжения, превышающие напряжение стабилизации падают на резистор R б , а на стабилитроне остается напряжение стабилизации, зависящее от параметров стабилитрона. На выходе параметрического стабилизатора возникают импульсы трапециидальной формы. Одновременно нулевому значению входного напряжения соответствует нулевое значение напряжения на выходе стабилизатора, т.е. происходит синхронизация напряжения питания и формирователя импульсов.

При появлении напряжения на выходе стабилитрона начинает заряжаться конденсатор С через резистор R 4 . Когда напряжение на конденсаторе достигнет напряжения срабатывания аналога тиристора, произойдет его открытие. Возникнет импульс тока разряда конденсатора С через транзисторы VT 1, VT 2 , и резистор R 3 на корпус схемы. На рис 7.11 ток разряда конденсатора показан пунктирной линией. Всплеск тока через резистор R 3 приведет к всплеску напряжения на управляющем электроде тиристора и запуску последнего. Время заряда конденсатора С относительно нулевого значения напряжения определяется параметрами резистора R 4 и емкостью конденсатора С . Цепь R 4 – C задает угол управления тиристора, соответствующий времени задержки запуска тиристора относительно нулевого напряжения. Для рассматриваемой схемы максимальный угол управления для однофазного тиристорного регулятора на частоте 50 Гц составляет 10 мС , что соответствует углу управления 180 о. Для угла управления в 90 о задержка запуска тиристора относительно нулевого значения напряжения составляет 5 мС. Изменяя положение ручки реостата R 4 можно задать любое время заряда конденсатора, т.е. задать угол управления тиристора. При перемещении бегунка реостата вверх растет сопротивление реостата, увеличивается время заряда конденсатора до напряжения включения тиристора, а, следовательно, растет угол управления тиристора и снижается действующее значение напряжения на нагрузке.

Действующее значение напряжения на нагрузке определяется по формуле

где U d - действующее значение напряжения на нагрузке; U dо – максимальное значение напряжения на нагрузке при угле управления j = 0 0 ; φ - угол управления тиристора.

При включении нагрузки R н 2 до выпрямителя, по ней протекает переменный по направлению ток только в том случае, если тиристор будет открыт. Тогда форма выходного напряжения, (т.е. на нагрузке) будет соответствующей рис . 7.12, е . Заштрихована действующая часть напряжения на нагрузке. При включении нагрузки перед выпрямителем по ней протекает переменный по направлению ток, действующее значение которого определяется временем открытого состояния тиристора, а форма выходного напряжения имеет вид рис . 7.1, ж .

Тиристор остается в схеме на прежнем месте, и формирователь остается тем же. В зависимости от того, в какой части схемы установлен резистор нагрузки, ток по ней протекает постоянный или переменный по направлению. Если по нагрузке проходит постоянный по направлению регулируемый ток, схема называется «Тиристорный управляемый выпрямитель». При включении нагрузки перед выпрямителем по ней протекает переменный по направлению ток, и схема называется «Тиристорный регулятор мощности».

Регулятор мощности можно построить и на симисторе (рис . 7.13).

Последовательно с симистором . Для открытия симистора необходимы управляющие импульсы, формирователь которых построен на парах транзисторов VT 1 -VT 2 и VT 3 -VT 4 . Каждая па

ра транзисторов представляющих собой аналоги тиристоров: VT 1 -VT 2 –с управлением по катоду, а VT 3 и VT 4 - с управлением по аноду. Балластное сопротивление R б и стабилитроны VD 1 и VD 2 образуют стабилизатор переменного напряжения. Угол управления симистора задается сопротивлением резистора (R о+R 1) и емкостью конденсатора С . При положительной полуволне верхняя обкладка конденсатора заряжается положительно, и когда напряжение на нем достигнет напряжения включения аналога тиристора происходит открытие аналога тиристора и запуск симистора VS .

Импульс тока разряда конденсатора проходит через резистор R 6 и открывает симистор.

При отрицательном полупериоде открывается аналог тиристора, построенный на транзисторах VT 3 - VT 4 и снова запускает симистор.

При работе тиристорных управляемых выпрямителей на индуктивную нагрузку (обмотки возбуждения и якорь двигателей постоянного тока) возникают проблемы выключения тиристоров, связанные с отставанием тока от напряжения. Для выключения тиристора требуется принудительная коммутация, так как ток самоиндукции обмоток возбуждения или якоря двигателя продолжает идти после достижения напряжением нулевого уровня. Этот вопрос в учебном пособии не рассматривается.

Очень часто необходимо, чтобы выпрямитель не только преобразовывал переменное напряжение, но и был способен изменять его значение. Выпрямители, которые совмещают выпрямление переменного напряжения (тока) с управлением выпрямленным напряжением (током), называются управляемыми выпрямителями . Основным элементом управляемых выпрямителей является тиристор (хотя можно влепить и транзистор).

Рис. 1 - Управляемый однополупериодный выпрямитель

Управление выходным выпрямленным напряжением сводится к управлению во времени моментом отпирания тиристора. Это делается короткими импульсами с крутым фронтом (иголка). Если тиристор открыт в течении всего полупериода, то на выходе получается пульсирующее напряжение, аналогично неуправляемому выпрямителю. При изменении времени задержки отпирания тиристоров меняется выпрямленное напряжение в сторону уменьшения. Это видно из графиков ниже. Для каждой задержки соответствует определенный угол сдвига по фазе между напряжением на тиристоре и сигналом управления. Этот угол называется углом управления или регулирования и определяется как α=ωt з . t з - то самое время задержки, ω - угловая частота (ω=2πf).

Рис. 2 - Принцип управления выпрямленным напряжением задержкой открывания тиристоров

Управлять тиристором можно, например, с помощью вот такого фазовращателя:

<

Рис. 3 – Фазовращатель

Ниже на рисунке показана схема однофазного двуполупериодного управляемого выпрямителя импульсно-фазовым управлением.

Рис. 4 - Однофазный двуполупериодный управляемый выпрямитель

Напряжение с выхода фазовращателя R1C1 поступает на вход усилителей-ограничителей (VT1, VT2). Диоды VD5, VD6 срезают положительные полуволны этого напряжения. Напряжение трапециидальной формы с выхода усилителей ограничителей поступает на дифференцирующие цепи R4C2, R5C3, а затем на управляющие входы тиристоров VS1, VS2. Диоды VD7, VD8 предотвращают попадание отрицательных импульсов на управляющие электроды тиристоров. Усилители ограничители питаются от отдельного выпрямителя VD1-VD4.

Однофазные управляемые выпрямители выполняются по схеме с нулевым выводом трансформатора (одноплечевые) и по мостовой схеме (двухплечевые). Принцип действия и характеристики однофазных управляемых выпрямителей рассмотрим на примере схемы с нулевым выводом трансформатора (рис.5.4).

Рис.5.4. Однофазный управляемый выпрямитель

Рассмотрим работу управляемого выпрямителя на активно- индуктивную нагрузку с противо эдс.

Временные диаграммы напряжений и токов, приведенные на (рис.5.5,а-е), поясняют работу схемы.



В момент времени от системы управления (СУ) выпрямителя поступает импульс на управляющий электрод тиристора Т1. В результате отпирания тиристор Т1 подключает нагрузку на напряжение вторичной обмотки трансформатора. На нагрузке на интервале формируется напряжение (затемненная область на рис.5.5,б), представляющее собой участок кривой напряжения .Через нагрузку и тиристор Т1 протекает один и тот же ток. При переходе напряжения питания через нуль ток тиристора Т1 продолжает протекать вследствие того, что в нагрузке включена индуктивность. В кривой выходного напряжения создаются отрицательные участки.

Очередной отпирающий импульс подается на тиристор Т2. Отпирание этого тиристора приводит к запиранию Т1. При этом к нагрузке прикладывается положительное напряжения той же формы, что и на интервале проводимости тиристора Т1. На интервале проводимости тиристора Т2, сумма напряжений вторичных обмоток трансформатора подключаются к тиристору Т1, вследствие чего, с момента отпирания тиристора Т2, на тиристоре Т1 действует обратное напряжение (рис.5.5,е). В последующем процессы в схеме следуют аналогично, рассмотренным выше. Токи тиристоров показаны на рис.5.5,г,д, а ток нагрузки - на рис.5.5,в.

Потребляемый из сети ток i 1 показан на рис.5.5,а. Первая гармоника потребляемого тока i 1 (1) отстает от напряжения сети по фазе. Это приводит к потреблению выпрямителем из сети реактивной мощности, что неблагоприятно сказывается на энергетических характеристиках.

Рассмотренный фазовый метод управления может быть реализован с помощью фазосдвигающих способов, одним из которых является вертикальный способ управления, основанный на сравнении опорного напряжения (обычно пилообразной формы) и постоянного напряжения сигнала управления. Равенство мгновенных значений этих напряжений определяет фазу , при которой схема вырабатывает импульс, затем усиливаемый и подаваемый на управляющий электрод тиристора. Изменение фазы управляющего импульса достигается изменением уровня входного напряжения управления . Функциональная схема такого управления приведена на рисунке 5.6.

Опорное напряжение, вырабатываемое генератором пилообразного напряжения ГПН и синхронизированное с напряжением сети с помощью синхронизированного с сетью генератора импульсов (ГИ), подаётся на схему сравнения СС, на которую одновременно поступает и входное управляющее напряжение u У (сигнал управления). Сигнал со схемы сравнения поступает на распределитель импульсов (РИ) и далее на оконечные усилители мощности (У), откуда в виде мощного, обладающего крутым фронтом и регулируемого по фазе импульса, подаётся на управляющий электрод тиристора.

Обычно между распределителем импульсов и оконечными усилителями используются схемы гальванической развязки, что на рис.5.6 условно показано ломаной стрелкой.

Одной из важнейших особенностей управляемого выпрямителя является его способность регулировать среднее значение выпрямленного напряжения при изменении угла . Если индуктивность в цепи нагрузки достаточно велика* для поддержания тока при отрицательном напряжении, то зависимость среднего выходного напряжения от угла управления находится из выражения:

(5.1)

где -амплитуда напряжения на вторичной обмотке трансформатора.

Тиристорные преобразователи частоты (инверторы) представляют собой устройства, преобразующие постоянное или переменное напряжение в переменное заданной частоты. Большинство современных тиристорных инверторов позволяют осуществлять изменение частотной характеристики выходного напряжения в требуемых пределах, благодаря чему они нашли широкое применение в различных отраслях промышленности и транспорта, например, для плавной регулировки скорости вращения асинхронных электродвигателей, обеспечения необходимого режима электропитания плавильных печей и т.п. Несмотря на то, что в последнее время все большее распространение получают преобразователи частоты на IGBT, тиристорные инверторы по-прежнему доминируют там, где необходимо обеспечить большие мощности (вплоть нескольких мегаватт) с выходным напряжением в десятки киловольт. Именно то, что тиристорные преобразователи частоты имеют высокий КПД (до 98%), способны успешно справляться с большими напряжениями и токами, а также выдерживать при этом импульсные воздействия и довольно продолжительную нагрузку, является их основным достоинством. Ниже приведена блок-схема наиболее типичного современного тиристорного преобразователя с явно выраженным звеном постоянного тока.

В выпрямителе (В) входное переменное напряжение выпрямляется и поступает в фильтр (Ф), где оно сглаживается, фильтруется, после чего опять преобразуется инвертором (И) в переменное, которое может регулироваться по таким параметрам, как амплитуда и частота.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама